- #1
thatboi
- 133
- 18
For the Ising Model, the Ginzburg Criterion is, for ##m_{0}## the order parameter and ##\delta m## the fluctuations: $$\langle\delta m\left(x\right)\delta m\left(x^{\prime}\right)\rangle << m_{0}^{2}$$. I want to understand how to derive the left hand side of the inequality from ##\langle M^{2} \rangle - \langle M \rangle ^{2}## where ##M = m_{0} + \delta_{m}##. Just from plugging in, I'm not sure how most of the terms cancel out, or what the fate of a term like ##\langle \delta m\rangle \langle \delta m \rangle## is.