- #1
arestes
- 80
- 3
- TL;DR Summary
- direct definition of the LT of cos(t)/t diverges. However wolframalpha computes it and gives a result with log and Euler Mascheroni constant
So, I know the direct definition of the Laplace Transform:
$$ \mathcal{L}\{f(t) \} = \int_0^\infty e^{-st}f(t)dt$$
So when I plug in:
$$\frac{\cos(t)}{t}$$
I get a divergent integral.
however:https://www.wolframalpha.com/input/?i=+Laplace+transform+cos(t)/(t)
is supposed to be the L.T. What is wolframalpha computing? Am I mistaken in something above?
$$ \mathcal{L}\{f(t) \} = \int_0^\infty e^{-st}f(t)dt$$
So when I plug in:
$$\frac{\cos(t)}{t}$$
I get a divergent integral.
however:https://www.wolframalpha.com/input/?i=+Laplace+transform+cos(t)/(t)
is supposed to be the L.T. What is wolframalpha computing? Am I mistaken in something above?