- #1
yuiop
- 3,962
- 20
With reference to this wikipedia article http://en.wikipedia.org/wiki/Lemaitre_metric
it states
[tex]r = \left(\frac{3}{2}(p-\tau)\right)^{2/3}\ r_g^{1/3} [/tex]
and
[tex] r_g = \frac{3}{2}(p-\tau) [/tex]
Those two statements put together imply
[tex]r = \left(\frac{3}{2}(p-\tau)\right)^{2/3} \left(\frac{3}{2}(p-\tau)\right)^{1/3} [/tex]
[tex]r = r_g[/tex]
This in turn implies the Schwarzschild radial variable r is equal to the constant Schwarzschild radius [itex]r_s = 2gm/c^2[/itex] and this leads to the Lemaitre metric being equivalent to
[tex] ds^2 = d\tau^2 - dp^2 [/tex]
and when [itex]r_g/r = 1[/itex] is inserted into the Lemaitre coordinate definitions:
[tex]\begin{cases}
d\tau = dt + \sqrt{\frac{r_{g}}{r}}\frac{1}{(1-\frac{r_{g}}{r})}dr~,\\
d\rho = dt + \sqrt{\frac{r}{r_{g}}}\frac{1}{(1-\frac{r_{g}}{r})}dr~.
\end{cases}[/tex]
the result is:
[tex]\begin{cases}
d\tau = dt \pm\ \frac{dr}{0}~,\\
d\rho = dt \pm\ \frac{dr}{0}~.
\end{cases}[/tex]
Obviously I am missing something important here. Can anyone clarify?
it states
[tex]r = \left(\frac{3}{2}(p-\tau)\right)^{2/3}\ r_g^{1/3} [/tex]
and
[tex] r_g = \frac{3}{2}(p-\tau) [/tex]
Those two statements put together imply
[tex]r = \left(\frac{3}{2}(p-\tau)\right)^{2/3} \left(\frac{3}{2}(p-\tau)\right)^{1/3} [/tex]
[tex]r = r_g[/tex]
This in turn implies the Schwarzschild radial variable r is equal to the constant Schwarzschild radius [itex]r_s = 2gm/c^2[/itex] and this leads to the Lemaitre metric being equivalent to
[tex] ds^2 = d\tau^2 - dp^2 [/tex]
and when [itex]r_g/r = 1[/itex] is inserted into the Lemaitre coordinate definitions:
[tex]\begin{cases}
d\tau = dt + \sqrt{\frac{r_{g}}{r}}\frac{1}{(1-\frac{r_{g}}{r})}dr~,\\
d\rho = dt + \sqrt{\frac{r}{r_{g}}}\frac{1}{(1-\frac{r_{g}}{r})}dr~.
\end{cases}[/tex]
the result is:
[tex]\begin{cases}
d\tau = dt \pm\ \frac{dr}{0}~,\\
d\rho = dt \pm\ \frac{dr}{0}~.
\end{cases}[/tex]
Obviously I am missing something important here. Can anyone clarify?
Last edited: