- #1
th4450
- 38
- 0
Homework Statement
Let the roots of x2 + x + 1 = 0 be [itex]\alpha[/itex] and [itex]\beta[/itex], form a quadratic equation with roots:
(i) [itex]\alpha[/itex]2, [itex]\beta[/itex]2; and
(ii) [itex]\frac{1}{\alpha}[/itex], [itex]\frac{1}{\beta}[/itex].The attempt at a solution
sum of roots = [itex]\alpha[/itex] + [itex]\beta[/itex] = -1
product of roots = [itex]\alpha\beta[/itex] = 1
(i)
sum of roots = [itex]\alpha[/itex]2 + [itex]\beta[/itex]2 = (-1)2 - 2(1) = -1
product of roots = [itex]\alpha[/itex]2[itex]\beta[/itex]2 = 12 = 1
Quadratic equation: x2 + x + 1 = 0
(ii)
sum of roots = [itex]\frac{1}{\alpha}[/itex] + [itex]\frac{1}{\beta}[/itex] = [itex]\frac{-1}{1}[/itex] = -1
product of roots = ([itex]\frac{1}{\alpha}[/itex])([itex]\frac{1}{\beta}[/itex]) = 1
Quadratic equation: x2 + x + 1 = 0
Is this weird? Did I do something wrong?
Thanks.
Let the roots of x2 + x + 1 = 0 be [itex]\alpha[/itex] and [itex]\beta[/itex], form a quadratic equation with roots:
(i) [itex]\alpha[/itex]2, [itex]\beta[/itex]2; and
(ii) [itex]\frac{1}{\alpha}[/itex], [itex]\frac{1}{\beta}[/itex].The attempt at a solution
sum of roots = [itex]\alpha[/itex] + [itex]\beta[/itex] = -1
product of roots = [itex]\alpha\beta[/itex] = 1
(i)
sum of roots = [itex]\alpha[/itex]2 + [itex]\beta[/itex]2 = (-1)2 - 2(1) = -1
product of roots = [itex]\alpha[/itex]2[itex]\beta[/itex]2 = 12 = 1
Quadratic equation: x2 + x + 1 = 0
(ii)
sum of roots = [itex]\frac{1}{\alpha}[/itex] + [itex]\frac{1}{\beta}[/itex] = [itex]\frac{-1}{1}[/itex] = -1
product of roots = ([itex]\frac{1}{\alpha}[/itex])([itex]\frac{1}{\beta}[/itex]) = 1
Quadratic equation: x2 + x + 1 = 0
Is this weird? Did I do something wrong?
Thanks.