- #1
rauletechuleta
- 14
- 0
Hi everyone. The answer to the question about the relationship between amplitude and frequency is usually that they are independent of each other. Pardon the imprecision of my language, for I am not a physicist. I'll try my best to be clear. The amplitude of a wave is a measure of the distance between the wave's extremes. In light, amplitude corresponds phenomenologically with brightness. Now, I have read that amplitude measures the energy of a wave. I have also read, however, that frequency is a measure of a wave's energy, and positively correlates with it - as does amplitude. When I look at a diagram of a transversal wave, I intuitively assume that when a particle behaving as a wave moves in space, the particle -given a constant frequency- must move faster if the amplitude increases because its displacement from the resting position -the forward axis indicating direction- is greater. that is, in order to keep the frequency constant, a greater amplitude would require a greater oscillation speed. Can someone explain why this is not so, or confirm that it is so?
Thank you
Thank you