- #1
Jack3145
- 14
- 0
The Ricci Tensor comes from the Riemann Curvature Tensor:
[tex]R^{\beta}_{\nu\rho\sigma} = \Gamma^{\beta}_{\nu\sigma,\rho} - \Gamma^{\beta}_{\nu\rho,\sigma} + \Gamma^{\alpha}_{\nu\sigma}\Gamma^{\beta}_{\alpha\ rho} - \Gamma^{\alpha}_{\nu\rho}\Gamma^{\beta}_{\alpha\sigma}[/tex]
The Ricci Tensor just contracts one of the indices:
[tex]R_{\nu\rho} = R^{\beta}_{\nu\rho\beta}[/tex]
What is the function of the Ricci Tensor and the Riemann Curvature Tensor? How does the contraction of indices change the effect?
[tex]R^{\beta}_{\nu\rho\sigma} = \Gamma^{\beta}_{\nu\sigma,\rho} - \Gamma^{\beta}_{\nu\rho,\sigma} + \Gamma^{\alpha}_{\nu\sigma}\Gamma^{\beta}_{\alpha\ rho} - \Gamma^{\alpha}_{\nu\rho}\Gamma^{\beta}_{\alpha\sigma}[/tex]
The Ricci Tensor just contracts one of the indices:
[tex]R_{\nu\rho} = R^{\beta}_{\nu\rho\beta}[/tex]
What is the function of the Ricci Tensor and the Riemann Curvature Tensor? How does the contraction of indices change the effect?