- #1
kasse
- 384
- 1
A particle is in a state described by [tex](\frac{mk}{\pi^2 \hbar^{2}})^{1/8}exp(- \frac{1}{2 \hbar} \sqrt{mk}x^{2})exp(-if(t))[/tex]
When applying separation of variables here, my book ignores the first fraction and sets
[tex]g(x) = exp(- \frac{1}{2 \hbar} \sqrt{mk}x^{2})[/tex]
[tex]h(t) = exp(-if(t))[/tex]
But then [tex]\Psi(x,t) \neq g(x)h(t)[/tex] right?
When applying separation of variables here, my book ignores the first fraction and sets
[tex]g(x) = exp(- \frac{1}{2 \hbar} \sqrt{mk}x^{2})[/tex]
[tex]h(t) = exp(-if(t))[/tex]
But then [tex]\Psi(x,t) \neq g(x)h(t)[/tex] right?