- #1
Pearce_09
- 74
- 0
there is N so that
[tex] |S_n(x) - S_m(x)| \leq \epsilon [/tex] for ever x in I if n,m N
( prove by cauchy's criterion )
claim: [tex] lim S_n(x) = S(x) [/tex]
[tex] |S_n(x) - S(x)| < \epsilon /2[/tex] if n[tex] \geq N [/tex]
then,
[tex] |S_n(x) - S_m(x)| < |S_n(x) - S(x)| + |S(x) - S_m(x)| [/tex]
< [tex] \epsilon /2 + \epsilon /2 [/tex]
< [tex] \epsilon [/tex]
therefor the series converges pointwise to a funtion S(x)
im stuck here, I don't know where to go, to say that [tex] S_n(x) [/tex] converges uniformly on I.
[tex] |S_n(x) - S_m(x)| \leq \epsilon [/tex] for ever x in I if n,m N
( prove by cauchy's criterion )
claim: [tex] lim S_n(x) = S(x) [/tex]
[tex] |S_n(x) - S(x)| < \epsilon /2[/tex] if n[tex] \geq N [/tex]
then,
[tex] |S_n(x) - S_m(x)| < |S_n(x) - S(x)| + |S(x) - S_m(x)| [/tex]
< [tex] \epsilon /2 + \epsilon /2 [/tex]
< [tex] \epsilon [/tex]
therefor the series converges pointwise to a funtion S(x)
im stuck here, I don't know where to go, to say that [tex] S_n(x) [/tex] converges uniformly on I.