- #1
GregAshmore
- 221
- 0
I'm trying to understand exactly why Einstein considered Maxwell's electrodynamics to be non-relativistic. As I read Maxwell's paper, it seems to me that it is concerned only with relative motions. I'm thinking that the problem must be with the stationary ether proposed by Lorentz, for then motions must be considered relative to the coordinate system of the ether, not relative to the other poles and conductors in the system under consideration.
Here is Einstein from his 1905 paper:
Einstein says that when the magnet is stationary and the conductor moving, no electric field arises in the neighborhood of the magnet.
As I read Maxwell's equation for electromotive force (equation D in the paper), it seems to me that "electromotive force" and "electric field" are synonymous. For in the equation, electromotive force at any point is a vector quantity, and it gives rise to current; that is the definition of an electric field.
Here is why I do not understand Einstein's claim that no magnetic field arises in the vicinity of the magnet: In the equation for electromotive force, the first term is the product of the strength of the magnetic field and the velocity of the conductor relative to the field. Thus, when the conductor moves and the magnet is stationary, electromotive force increases. Electromotive force is a synonym for electric field. Therefore, the movement of the conductor in the magnetic field gives rise to an electric field.
Einstein also says that there is no energy which corresponds to the electromotive force, in itself. I'm not sure what he means. As to intrinsic energy in the electromagnetic field, Maxwell says that it is proportional to the magnetic intensity, independent of electromotive force; he makes no mention of whether the magnet is moving or not.
Comments? Am I on the right track in thinking it is the stationary ether which causes the problem?
Here is Einstein from his 1905 paper:
It is known that Maxwell’s electrodynamics—as usually understood at the
present time—when applied to moving bodies, leads to asymmetries which do
not appear to be inherent in the phenomena. Take, for example, the reciprocal
electrodynamic action of a magnet and a conductor. The observable phenomenon
here depends only on the relative motion of the conductor and the
magnet, whereas the customary view draws a sharp distinction between the two
cases in which either the one or the other of these bodies is in motion. For if the
magnet is in motion and the conductor at rest, there arises in the neighbourhood
of the magnet an electric field with a certain definite energy, producing
a current at the places where parts of the conductor are situated. But if the
magnet is stationary and the conductor in motion, no electric field arises in the
neighbourhood of the magnet. In the conductor, however, we find an electromotive
force, to which in itself there is no corresponding energy, but which gives
rise—assuming equality of relative motion in the two cases discussed—to electric
currents of the same path and intensity as those produced by the electric
forces in the former case.
Einstein says that when the magnet is stationary and the conductor moving, no electric field arises in the neighborhood of the magnet.
As I read Maxwell's equation for electromotive force (equation D in the paper), it seems to me that "electromotive force" and "electric field" are synonymous. For in the equation, electromotive force at any point is a vector quantity, and it gives rise to current; that is the definition of an electric field.
Here is why I do not understand Einstein's claim that no magnetic field arises in the vicinity of the magnet: In the equation for electromotive force, the first term is the product of the strength of the magnetic field and the velocity of the conductor relative to the field. Thus, when the conductor moves and the magnet is stationary, electromotive force increases. Electromotive force is a synonym for electric field. Therefore, the movement of the conductor in the magnetic field gives rise to an electric field.
Einstein also says that there is no energy which corresponds to the electromotive force, in itself. I'm not sure what he means. As to intrinsic energy in the electromagnetic field, Maxwell says that it is proportional to the magnetic intensity, independent of electromotive force; he makes no mention of whether the magnet is moving or not.
Comments? Am I on the right track in thinking it is the stationary ether which causes the problem?