- #1
paulb203
- 112
- 47
- TL;DR Summary
- A kind of personal 'proof' to help me grasp πr^2
I know there are videos etc explaining why but I thought I would try to find a way to understand this myself.
Imagine a version of πr^2, but instead of being for the area of a circle, it’s for the area of a square.
Call it sqi ar ^2
sqi = the ratio of the ‘diameter’ of the square to the square’s ‘circumference’ (the ‘diameter’ of the square being a vertical or horizontal line through the square’s centre, and the ‘circumference’ being its perimeter).
So, sqi=4 (like π=3.14...)
ar = the ‘radius’ of the square (half it’s ‘diameter’, just like with a circe and it’s radius)
Now take a square 4 cm by 4cm
And apply sqi ar ^2
Which gives us 4x2^2
Which = 16cm^2
Which matches with the 16cm^2 we would get from the conventional way of finding the area of the square.
This helps make sense of πr^2, for me at least
Any thoughts?
Imagine a version of πr^2, but instead of being for the area of a circle, it’s for the area of a square.
Call it sqi ar ^2
sqi = the ratio of the ‘diameter’ of the square to the square’s ‘circumference’ (the ‘diameter’ of the square being a vertical or horizontal line through the square’s centre, and the ‘circumference’ being its perimeter).
So, sqi=4 (like π=3.14...)
ar = the ‘radius’ of the square (half it’s ‘diameter’, just like with a circe and it’s radius)
Now take a square 4 cm by 4cm
And apply sqi ar ^2
Which gives us 4x2^2
Which = 16cm^2
Which matches with the 16cm^2 we would get from the conventional way of finding the area of the square.
This helps make sense of πr^2, for me at least
Any thoughts?