- #1
pokemon123
- 5
- 2
so the concept of work I've never really understood (even after a year and a half of physics classes rip). What mainly confuses me is when the work done is positive or negative. From what I understand the net work=deltaKE or net work=-PE assuming energy is conserved (so if an external force was in the system this thereom does NOT hold true). But I get confused by this in situations where you seemingly are able to gain kinetic energy and potential energy despite having conservative forces.
For example: I define the system as the Earth, my hand, and a rock. If I lift the rock up and accelerate it shouldn't it gain KE because vf>vi (my hand is accelerating too so it gains KE) but isn't my hand and the rock also gaining PE because we are higher than before. Someone tried to explain this to me by saying that the reason why we're accelerating is because the overall potential energy is less at the top than at the bottom (i.e other PE like spring, electric) but I can't think of another significant type of PE in this scenario.
So yeah I'm confused how you seemingly can gain both PE and KE with conservative forces despite the work energy theorem stating the contrary.
note: I have only taken algebra so i would not understand calculus.
For example: I define the system as the Earth, my hand, and a rock. If I lift the rock up and accelerate it shouldn't it gain KE because vf>vi (my hand is accelerating too so it gains KE) but isn't my hand and the rock also gaining PE because we are higher than before. Someone tried to explain this to me by saying that the reason why we're accelerating is because the overall potential energy is less at the top than at the bottom (i.e other PE like spring, electric) but I can't think of another significant type of PE in this scenario.
So yeah I'm confused how you seemingly can gain both PE and KE with conservative forces despite the work energy theorem stating the contrary.
note: I have only taken algebra so i would not understand calculus.