- #1
Bling Fizikst
- 96
- 10
- Homework Statement
- below
- Relevant Equations
- below
Discuss uniform continuity of the following functions:
##\tan x## in ##[0,\frac{\pi}{2})##
##\frac{1}{x}\sin^2 x## in ##(0,\pi]##
##\frac{1}{x-3}## in ##(0,3),(4,\infty),(3,\infty)##
I am completely new to this uniform continuity and couldn't find a lot of examples to learn the solving pattern .
For the first problem , i tried to use the definition ,
for ##x,y## in the given interval , ##|x-y|<\delta\implies |\tan x-\tan y|=\frac{|\sin(x-y)|}{|\cos x\cos y|}\leq \frac{1}{|\cos x\cos y|}##
Just stuck in this and the other problems .
##\tan x## in ##[0,\frac{\pi}{2})##
##\frac{1}{x}\sin^2 x## in ##(0,\pi]##
##\frac{1}{x-3}## in ##(0,3),(4,\infty),(3,\infty)##
I am completely new to this uniform continuity and couldn't find a lot of examples to learn the solving pattern .
For the first problem , i tried to use the definition ,
for ##x,y## in the given interval , ##|x-y|<\delta\implies |\tan x-\tan y|=\frac{|\sin(x-y)|}{|\cos x\cos y|}\leq \frac{1}{|\cos x\cos y|}##
Just stuck in this and the other problems .