- #1
Lee33
- 160
- 0
Homework Statement
Is the sequence of function ##f_1, f_2,f_3,\ldots## on ##[0,1]## uniformly convergent if ##f_n(x) = \frac{x}{1+nx^2}##?
2. The attempt at a solution
I got the following but I think I did it wrong.
For ##f_n(x) = \frac{x}{1+nx^2}##, I got if ##f_n \to0## then we must find ##\epsilon>0## an ##N## such that for ##n>N## implies ##|f_n-0|<\epsilon.## So ##f_n(x) = \frac{x}{1+nx^2}##; ##\lim_{n\to\infty}f_n(x) =0##. Then for ##\epsilon>0## we have ##|f_n(x)-f(x)| = |\frac{x}{1+nx^2}|\le |\frac{1}{1+n}|<|\frac{1}{n}|<\epsilon## thus ##N = \frac{1}{\epsilon}##. But I think this is wrong since ##|1+nx^2|<|1+n|##? How can I show it is uniformly convergent?