- #1
twoflower
- 368
- 0
Hi, let's suppose
[tex]
f_{n}(x) = \frac{x^{n}}{1+x^{n}},
[/tex]
[tex]
a) x \in [ 0, 1 - \epsilon]
[/tex]
[tex]
b) x \in [ 1 - \epsilon, 1 + \epsilon]
[/tex]
[tex]
c) x \in [ 1 + \epsilon, \infty]
[/tex]
Where [itex]\epsilon \in \left( 0, 1 \right)[/itex]. Analyse pointwise, uniform and locally uniform convergence.
Well, we have
[tex]
\lim_{n \rightarrow \infty} f_{n} = \left\{ \begin{array}{rcl}
0 & x \in [0, 1)
\\ \frac{1}{2} & x = 1 \\
1 & x > 1
\end{array}\right.
[/tex]
I'll take the first case ([itex]x \in [ 0, 1 - \epsilon][/itex]). I want to find the supremum of
[tex]
\left|\frac{x^{n}}{1+x^{n}}\right|, x \in [0, 1-\epsilon]
[/tex]
To see if there are some extrems on this interval, I find the derivative:
[tex]
f^{'} = \frac{nx^{n-1}}{\left(1+x^{n}\right)^2} = 0 \Leftrightarrow x = 0 \notin [0, 1 - \epsilon]
[/tex]
So no extreme on this interval. Because
[tex]
f^{'} > 0
[/tex]
on this interval, [itex]f_{n}[/itex] is increasing. Thus the supremum is in the utmoust point of the interval, ie. [itex]\frac{1}{2}[/itex].
Thus I would say
[itex]f_{n}[/itex] doesn't converge uniformly on this interval.
Problem no. 1 - It's wrong.
Problem no. 2 - How would I analyse locally uniform convergence on this interval?
Thank you for any ideas.
[tex]
f_{n}(x) = \frac{x^{n}}{1+x^{n}},
[/tex]
[tex]
a) x \in [ 0, 1 - \epsilon]
[/tex]
[tex]
b) x \in [ 1 - \epsilon, 1 + \epsilon]
[/tex]
[tex]
c) x \in [ 1 + \epsilon, \infty]
[/tex]
Where [itex]\epsilon \in \left( 0, 1 \right)[/itex]. Analyse pointwise, uniform and locally uniform convergence.
Well, we have
[tex]
\lim_{n \rightarrow \infty} f_{n} = \left\{ \begin{array}{rcl}
0 & x \in [0, 1)
\\ \frac{1}{2} & x = 1 \\
1 & x > 1
\end{array}\right.
[/tex]
I'll take the first case ([itex]x \in [ 0, 1 - \epsilon][/itex]). I want to find the supremum of
[tex]
\left|\frac{x^{n}}{1+x^{n}}\right|, x \in [0, 1-\epsilon]
[/tex]
To see if there are some extrems on this interval, I find the derivative:
[tex]
f^{'} = \frac{nx^{n-1}}{\left(1+x^{n}\right)^2} = 0 \Leftrightarrow x = 0 \notin [0, 1 - \epsilon]
[/tex]
So no extreme on this interval. Because
[tex]
f^{'} > 0
[/tex]
on this interval, [itex]f_{n}[/itex] is increasing. Thus the supremum is in the utmoust point of the interval, ie. [itex]\frac{1}{2}[/itex].
Thus I would say
[itex]f_{n}[/itex] doesn't converge uniformly on this interval.
Problem no. 1 - It's wrong.
Problem no. 2 - How would I analyse locally uniform convergence on this interval?
Thank you for any ideas.
Last edited: