- #1
Also sprach Zarathustra
- 43
- 0
Hello!A little problem:With the given series,$$Y(x)= \sum_{n=1}^{\infty}(-1)^n\frac{x^n\ln^nx}{n!} $$ ,why $Y(x)$ is Uniformly converges for all $x\in(0,1]$ ?Ok, I know that $Y(x)$ is u.c by M-test:
$$\max{|x\ln{x}|}=\frac{1}{e}$$
And,
$$ \sum_{n=0}^{\infty}\frac{(\frac{1}{e})^n}{n!} $$
Is converges! But why only in $(0,1]$ ?
Thank you!
$$\max{|x\ln{x}|}=\frac{1}{e}$$
And,
$$ \sum_{n=0}^{\infty}\frac{(\frac{1}{e})^n}{n!} $$
Is converges! But why only in $(0,1]$ ?
Thank you!