- #1
Hummingbird25
- 86
- 0
Hello people, I'm tasked with showing the following:
given the series [tex]\sum_{n=1} ^{\infty} \frac{1}{x^2 + n^2}[/tex]
(1) show that it converges Uniformly [tex]f_n(x) :\mathbb{R} \rightarrow \mathbb{R}[/tex].
(2) Next show the function
[tex]f(x) = \sum_{n=1} ^{\infty} \frac{1}{x^2 + n^2} [/tex]
is continious on [tex]\mathbb{R}[/tex]
(1) Suppose [tex]f_n = \frac{1}{x^2 + n^2}[/tex],
Then [tex]f_n[/tex] is uniformly convergens if
[tex]sup _{x \in \mathbb{R}} |f_n(x) - x|[/tex]. Now
[tex]_{sup} _{x \in \mathbb{R}} |f_n(x) - x| = |\frac{1}{x^2 - n^2} - x| =
_{sup} _{x \in \mathbb{R}} \frac{1}{x^2 - n^2}[/tex]
The deriative of f_n(x) is non-negative on [tex]\mathbb{R}[/tex], so its increasing and is hence maximumized at [tex]x = \mathbb{R}[/tex]. So the supremum is [tex]1/n^2[/tex]. This does tend to zero as [tex]n \rightarrow \infty[/tex]. So therefore it converge Uniformly.
Am I on the right track here? If yes any hints on how to prove the continuety ?
I know that its something to do with:
\integral_{1} ^{\infty} 1/x^2 + n^2 dx = \sum_{n=1} ^{\infty} \frac{1}{x^2 + n^2}
Sincerely Hummingbird25
given the series [tex]\sum_{n=1} ^{\infty} \frac{1}{x^2 + n^2}[/tex]
(1) show that it converges Uniformly [tex]f_n(x) :\mathbb{R} \rightarrow \mathbb{R}[/tex].
(2) Next show the function
[tex]f(x) = \sum_{n=1} ^{\infty} \frac{1}{x^2 + n^2} [/tex]
is continious on [tex]\mathbb{R}[/tex]
(1) Suppose [tex]f_n = \frac{1}{x^2 + n^2}[/tex],
Then [tex]f_n[/tex] is uniformly convergens if
[tex]sup _{x \in \mathbb{R}} |f_n(x) - x|[/tex]. Now
[tex]_{sup} _{x \in \mathbb{R}} |f_n(x) - x| = |\frac{1}{x^2 - n^2} - x| =
_{sup} _{x \in \mathbb{R}} \frac{1}{x^2 - n^2}[/tex]
The deriative of f_n(x) is non-negative on [tex]\mathbb{R}[/tex], so its increasing and is hence maximumized at [tex]x = \mathbb{R}[/tex]. So the supremum is [tex]1/n^2[/tex]. This does tend to zero as [tex]n \rightarrow \infty[/tex]. So therefore it converge Uniformly.
Am I on the right track here? If yes any hints on how to prove the continuety ?
I know that its something to do with:
\integral_{1} ^{\infty} 1/x^2 + n^2 dx = \sum_{n=1} ^{\infty} \frac{1}{x^2 + n^2}
Sincerely Hummingbird25
Last edited: