Uniform rod can pivot about a horizontal, fr

Click For Summary
The discussion focuses on calculating the angular speed of a uniform rod pivoting about a frictionless pin after being released from an angle of 40°. Participants apply the conservation of energy principle, equating initial potential energy to final kinetic energy. The calculations involve both rotational and translational kinetic energy, with confusion about the necessity of translational energy. The correct approach emphasizes the center of mass's height for gravitational potential energy, leading to a final angular speed of 2.75 rad/s. The conversation highlights the importance of understanding energy types in rotational dynamics.
synchronous
Messages
17
Reaction score
0

Homework Statement



The thin uniform rod in the figure below has length 2.5 m and can pivot about a horizontal, frictionless pin through one end. It is released from rest at angle θ = 40° above the horizontal. Use the principle of conservation of energy to determine the angular speed of the rod as it passes through the horizontal position.

Homework Equations



E(mech, final) = E(mech, initial)
K(final) + U(final) = K(initial) + U(initial)
K(rotational) + K(translational) + U(final) = 0 + U(initial)
.5mr^2w^2 + .5m(wr/sin 40)^2 + mgh(final) = mgh(initial)
w = vsin(theta)/r

The Attempt at a Solution



I used both rotational and translational energy (not sure why translational energy applies though) for final kinetic energy. After masses cancel out,

.5(2.5)^2(w)^2 + .5w^2(2.5)^2/(sin(40))^2 + 9.81(2.5) = 9.8(4.1)
3.125w^2 + 7.56w^2 + 24.5 = 40.32
w = 1.22 rad/s
 
Physics news on Phys.org
synchronous said:
I used both rotational and translational energy (not sure why translational energy applies though) for final kinetic energy. After masses cancel out,

.5(2.5)^2(w)^2 + .5w^2(2.5)^2/(sin(40))^2 + 9.81(2.5) = 9.8(4.1)
3.125w^2 + 7.56w^2 + 24.5 = 40.32
w = 1.22 rad/s


The gravitational potential is going to be the height of the center of mass isn't it? And doesn't that lay half way along the rod at the initial angle?

Won't just the gravitational potential then be the kinetic energy - 1/2*Iω2
 
Rock on! Thanks for the assistance. I was thinking of the problem as a particle at the end of a massless rod. Finding the center of mass and using that in my calculations led to a correct answer of 2.75 rad/sec.
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
8K
Replies
1
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K