- #1
bchui
- 42
- 0
I always wonder how the definitions of curvatures of curves and surfaces be unified by the Riemann Tensor symbols.
For surfaces, I know R_{1,2,1,2} corresponds to the Gaussian curvature of a surface. How come R_{1,1,1,1}=0 and not corresponds to the curvature of a curve in \RE^2 or in \Re^3 ?
For surfaces, I know R_{1,2,1,2} corresponds to the Gaussian curvature of a surface. How come R_{1,1,1,1}=0 and not corresponds to the curvature of a curve in \RE^2 or in \Re^3 ?