- #1
Ronankeating
- 63
- 0
Dear All,
In general eigenvalue problem solutions we obtain the eigenvalues along with eigenvectors. Eigenvalues are unique for each individual problem but eigenvectors are not, since the case is like that how we can rely that solution based on the eigenvector is correct. Because if solution is X(eigenvectors) then 10*X, 20*X, 30*X, etc..will also conform with (K-w2*M)*X=0 eigenvalue problem. And sometimes we use those eigenvectors to find exact solution e.g. K*X = F and how reliable can be those solution even if the eigenvector is normalised?
Regards,
In general eigenvalue problem solutions we obtain the eigenvalues along with eigenvectors. Eigenvalues are unique for each individual problem but eigenvectors are not, since the case is like that how we can rely that solution based on the eigenvector is correct. Because if solution is X(eigenvectors) then 10*X, 20*X, 30*X, etc..will also conform with (K-w2*M)*X=0 eigenvalue problem. And sometimes we use those eigenvectors to find exact solution e.g. K*X = F and how reliable can be those solution even if the eigenvector is normalised?
Regards,
Last edited: