- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
Let $(\star)\left\{\begin{matrix}
\Delta u=0 & \text{ in } B_R \\
u|_{\partial{B_R}}=\phi &
\end{matrix}\right.$.
Theorem: If $\phi \in C^0(\partial{B_R})$ then there is a unique solution of the problem $(\star)$ and $u(x)=\frac{R^2-|x|^2}{w_n R} \int_{\partial{B_R}} \frac{\phi(\xi) dS}{|x- \xi|^n}$.
Proof: if $x_0 \in \partial{B_R}$ then it has to hold that $\lim_{x \to x_0 } u(x)=\phi(x_0)$.
$P(x, \xi)=\frac{R^2-|x|^2}{w_n R |x-\xi|^n}$
It holds that $\int_{\partial{B_R}} P(x, \xi) dS=1$.
$$\left| u(x)- \phi(x_0)\right|=\left| \int_{\partial{B_R}} P(x, \xi) (\phi(\xi)-\phi(x_0)) dS\right| \leq \int_{\partial{B_R}} P(x, \xi) |\phi(\xi)-\phi(x_0)| dS= \int_{|\xi-x_0| \leq \delta} P(x, \xi)|\phi(\xi)-\phi(x_0)| dS+\int_{|\xi-x_0| > \delta} P(x, \xi)|\phi(\xi)-\phi(x_0)| dS $$
Let $I_1=\int_{|\xi-x_0| \leq \delta} P(x, \xi)|\phi(\xi)-\phi(x_0)| dS$ and $I_2=\int_{|\xi-x_0| > \delta} P(x, \xi)|\phi(\xi)-\phi(x_0)| dS$.
$\forall \epsilon >0 \exists \delta>0$ so that if $|\xi-x_0| \leq \delta$ then $|I_1|< \frac{\epsilon}{2}$.
$I_2 \leq 2M \frac{R^2-|x|^2}{w_n R \delta^n} \int_{|\xi-x_0|=R} dS=2M \frac{R^2-|x|^2}{\delta^n} R^{n-2} \leq \frac{\epsilon}{2}$ if $x$ is near to $ x_0 $.
So we have the following: $\forall \epsilon>0 \exists \delta>0$ such that $|u(x)-\phi(x_0)| \leq \epsilon \Leftrightarrow \lim_{x \to x_0} u(x)=\phi(x_0)$.
First of all, why does it hold that $\left| u(x)- \phi(x_0)\right|=\left| \int_{\partial{B_R}} P(x, \xi) (\phi(\xi)-\phi(x_0)) dS\right| $ and not $\left| u(x)- \phi(x_0)\right|=\left| \int_{\partial{B_R}} ( P(x, \xi) \phi(\xi)-\phi(x_0) ) dS\right|$ ?Also why does it hold that $\int_{\partial{B_R}} P(x, \xi) |\phi(\xi)-\phi(x_0)| dS= \int_{|\xi-x_0| \leq \delta} P(x, \xi)|\phi(\xi)-\phi(x_0)| dS+\int_{|\xi-x_0| > \delta} P(x, \xi)|\phi(\xi)-\phi(x_0)| dS$ ?
Could you also explain to me how we get the inequalities for $I_1$ and $I_2$ ?
Let $(\star)\left\{\begin{matrix}
\Delta u=0 & \text{ in } B_R \\
u|_{\partial{B_R}}=\phi &
\end{matrix}\right.$.
Theorem: If $\phi \in C^0(\partial{B_R})$ then there is a unique solution of the problem $(\star)$ and $u(x)=\frac{R^2-|x|^2}{w_n R} \int_{\partial{B_R}} \frac{\phi(\xi) dS}{|x- \xi|^n}$.
Proof: if $x_0 \in \partial{B_R}$ then it has to hold that $\lim_{x \to x_0 } u(x)=\phi(x_0)$.
$P(x, \xi)=\frac{R^2-|x|^2}{w_n R |x-\xi|^n}$
It holds that $\int_{\partial{B_R}} P(x, \xi) dS=1$.
$$\left| u(x)- \phi(x_0)\right|=\left| \int_{\partial{B_R}} P(x, \xi) (\phi(\xi)-\phi(x_0)) dS\right| \leq \int_{\partial{B_R}} P(x, \xi) |\phi(\xi)-\phi(x_0)| dS= \int_{|\xi-x_0| \leq \delta} P(x, \xi)|\phi(\xi)-\phi(x_0)| dS+\int_{|\xi-x_0| > \delta} P(x, \xi)|\phi(\xi)-\phi(x_0)| dS $$
Let $I_1=\int_{|\xi-x_0| \leq \delta} P(x, \xi)|\phi(\xi)-\phi(x_0)| dS$ and $I_2=\int_{|\xi-x_0| > \delta} P(x, \xi)|\phi(\xi)-\phi(x_0)| dS$.
$\forall \epsilon >0 \exists \delta>0$ so that if $|\xi-x_0| \leq \delta$ then $|I_1|< \frac{\epsilon}{2}$.
$I_2 \leq 2M \frac{R^2-|x|^2}{w_n R \delta^n} \int_{|\xi-x_0|=R} dS=2M \frac{R^2-|x|^2}{\delta^n} R^{n-2} \leq \frac{\epsilon}{2}$ if $x$ is near to $ x_0 $.
So we have the following: $\forall \epsilon>0 \exists \delta>0$ such that $|u(x)-\phi(x_0)| \leq \epsilon \Leftrightarrow \lim_{x \to x_0} u(x)=\phi(x_0)$.
First of all, why does it hold that $\left| u(x)- \phi(x_0)\right|=\left| \int_{\partial{B_R}} P(x, \xi) (\phi(\xi)-\phi(x_0)) dS\right| $ and not $\left| u(x)- \phi(x_0)\right|=\left| \int_{\partial{B_R}} ( P(x, \xi) \phi(\xi)-\phi(x_0) ) dS\right|$ ?Also why does it hold that $\int_{\partial{B_R}} P(x, \xi) |\phi(\xi)-\phi(x_0)| dS= \int_{|\xi-x_0| \leq \delta} P(x, \xi)|\phi(\xi)-\phi(x_0)| dS+\int_{|\xi-x_0| > \delta} P(x, \xi)|\phi(\xi)-\phi(x_0)| dS$ ?
Could you also explain to me how we get the inequalities for $I_1$ and $I_2$ ?