- #1
unreal89
- 8
- 0
I am using an equation that states that critical sonic velocity is:
[itex]a_{cr}=\sqrt{\frac{2\gamma}{\gamma+1}gR_{gas}T'}[/itex]
The units should result in velocity ([itex]\frac{m}{s}[/itex])
Yet, when I do the unit reduction I do not get that answer.
Here is what I get:
Lets ignore the square root for now.
Also, [itex]\frac{2\gamma}{\gamma+1}[/itex] has no units, so that makes our job easier.
We are left with [itex]gR_{gas}T'[/itex]
With this we have: [itex]\left( \frac{m}{s^{2}}\right)\left( \frac{kJ}{kg\bullet K}\right)\left(K\right)[/itex]
Right away we cancel the Kelvin unit.
We now have: [itex]\left( \frac{m}{s^{2}}\right)\left( \frac{kJ}{kg}\right)[/itex]
Next we conver kJ to N∙m: [itex]\left( \frac{m}{s^{2}}\right)\left( \frac{1000 N \bullet m}{kg}\right)[/itex]
And N to [itex]\frac{kg∙m}{s^{2}}[/itex]: [itex]\left( \frac{m}{s^{2}}\right)\left( \frac{1000 \frac{kg∙m}{s^{2}} \bullet m}{kg}\right)[/itex] = [itex]\left( \frac{m}{s^{2}}\right)\left( \frac{1000 m^{2}}{s^{2}}\right)[/itex] = [itex]\left( \frac{1000m^{3}}{s^{4}}\right)[/itex]
Now if we throw the square root back on we see that:
[itex]\sqrt{\left( \frac{1000m^{3}}{s^{4}}\right)}[/itex]≠[itex]\frac{m}{s}[/itex]
I'm sure I am making a silly mistake somewhere, but I cannot find where. The text I got this from used English units and it checked out. I though that SI units would be even easier...
Thanks!
[itex]a_{cr}=\sqrt{\frac{2\gamma}{\gamma+1}gR_{gas}T'}[/itex]
The units should result in velocity ([itex]\frac{m}{s}[/itex])
Yet, when I do the unit reduction I do not get that answer.
Here is what I get:
Lets ignore the square root for now.
Also, [itex]\frac{2\gamma}{\gamma+1}[/itex] has no units, so that makes our job easier.
We are left with [itex]gR_{gas}T'[/itex]
With this we have: [itex]\left( \frac{m}{s^{2}}\right)\left( \frac{kJ}{kg\bullet K}\right)\left(K\right)[/itex]
Right away we cancel the Kelvin unit.
We now have: [itex]\left( \frac{m}{s^{2}}\right)\left( \frac{kJ}{kg}\right)[/itex]
Next we conver kJ to N∙m: [itex]\left( \frac{m}{s^{2}}\right)\left( \frac{1000 N \bullet m}{kg}\right)[/itex]
And N to [itex]\frac{kg∙m}{s^{2}}[/itex]: [itex]\left( \frac{m}{s^{2}}\right)\left( \frac{1000 \frac{kg∙m}{s^{2}} \bullet m}{kg}\right)[/itex] = [itex]\left( \frac{m}{s^{2}}\right)\left( \frac{1000 m^{2}}{s^{2}}\right)[/itex] = [itex]\left( \frac{1000m^{3}}{s^{4}}\right)[/itex]
Now if we throw the square root back on we see that:
[itex]\sqrt{\left( \frac{1000m^{3}}{s^{4}}\right)}[/itex]≠[itex]\frac{m}{s}[/itex]
I'm sure I am making a silly mistake somewhere, but I cannot find where. The text I got this from used English units and it checked out. I though that SI units would be even easier...
Thanks!