- #1
calvino
- 108
- 0
I've already completed 1), but it's necessary for one to know it for question 2). I'm pretty sure that I've found my homomorphism in 2, but I don't know whether or not is unique. How do I show a homomorphism is unique in this case?
Problem 1: Let R be a commutative unital ring, and let S be a multiplicative submonoid of R. Define an equivalence relation ~ on R x S by (a,s)~(b,t) if there is r in S with rat = rbs. Let a/s denote the ~-equivalence class of (a,s). Show that with
a/s + b/t = (at+bs)/st and (a/s)(b/t) = ab/st
one can make RxS/~ into a commutative, unital ring, and that j(a) = a/1 defines a homomorphism j of unital rings from R into RxS/~ that maps S into the group of invertible elements of RxS/~
Problem 2 (=continuation of Problem 1): Let R and S be as above, and let phi: R --> T be a homomorphism that maps S into the group of invertible elements of the commutative unital ring T. Show that there is unique homomorphism psi: RxS/~ ---> T of unital rings with psi.j = phi.
Problem 1: Let R be a commutative unital ring, and let S be a multiplicative submonoid of R. Define an equivalence relation ~ on R x S by (a,s)~(b,t) if there is r in S with rat = rbs. Let a/s denote the ~-equivalence class of (a,s). Show that with
a/s + b/t = (at+bs)/st and (a/s)(b/t) = ab/st
one can make RxS/~ into a commutative, unital ring, and that j(a) = a/1 defines a homomorphism j of unital rings from R into RxS/~ that maps S into the group of invertible elements of RxS/~
Problem 2 (=continuation of Problem 1): Let R and S be as above, and let phi: R --> T be a homomorphism that maps S into the group of invertible elements of the commutative unital ring T. Show that there is unique homomorphism psi: RxS/~ ---> T of unital rings with psi.j = phi.