- #1
spaghetti3451
- 1,344
- 34
The matrix representation ##U## for the group ##SU(2)## is given by
##U = \begin{bmatrix}
\alpha & -\beta^{*} \\
\beta & \alpha^{*} \\
\end{bmatrix}##
where ##\alpha## and ##\beta## are complex numbers and ##|\alpha|^{2}+|\beta|^{2}=1##.
This can be derived using the unitary of ##U## and the fact that ##\text{det}\ U=1##.Is any complex ##2\times 2## matrix with unit determinant necessarily unitary?Consider the following argument:
##\text{det}\ (U) = 1##
##(\text{det}\ U)(\text{det}\ U) = 1##
##(\text{det}\ U^{\dagger})(\text{det}\ U) = 1##
##\text{det}\ (U^{\dagger}U) = 1##
##\text{det}\ (U^{\dagger}U) = \text{det}\ (U)##
##U^{\dagger}U = U##
##U^{\dagger}= 1##
Where's my mistake in this argument?
##U = \begin{bmatrix}
\alpha & -\beta^{*} \\
\beta & \alpha^{*} \\
\end{bmatrix}##
where ##\alpha## and ##\beta## are complex numbers and ##|\alpha|^{2}+|\beta|^{2}=1##.
This can be derived using the unitary of ##U## and the fact that ##\text{det}\ U=1##.Is any complex ##2\times 2## matrix with unit determinant necessarily unitary?Consider the following argument:
##\text{det}\ (U) = 1##
##(\text{det}\ U)(\text{det}\ U) = 1##
##(\text{det}\ U^{\dagger})(\text{det}\ U) = 1##
##\text{det}\ (U^{\dagger}U) = 1##
##\text{det}\ (U^{\dagger}U) = \text{det}\ (U)##
##U^{\dagger}U = U##
##U^{\dagger}= 1##
Where's my mistake in this argument?