Unitary vector commuting with Hamiltonian and effect on system

In summary: Even in the degenerate case, you could still use the theorem that the eigenstates of an Hermitian operator span the Hilbert space, and are mutually orthogonal;-- that would be enough to prove ##|\phi_n\rangle = |\psi_n\rangle##.
  • #1
happyparticle
465
21
Homework Statement
U unitary operator that commute with H.
##| \psi_n \rangle## an eigenstate of H with eigenvalue ##E_n##
##| \phi_n \rangle = U | \psi_n \rangle##

Thus,
##| \phi_n \rangle = \sum_i \alpha_i |\psi_n^i \rangle##
Relevant Equations
##| \phi_n \rangle = \sum_i \alpha_i |\psi_n^i \rangle##
Hi,

I'm not sure to understand what ##| \phi_n \rangle = \sum_i \alpha_i |\psi_n^i## means exactly or how we get it.
From the statement, I understand that ##[U,H] = 0## and ##H|\psi_n \rangle = E_n|\psi_n \rangle##

Also, a linear combination of all states is also an solution.

If U commutes with H then they have the same eigenstates (and same eigenvalues ?)
Thus, ##U|\psi_n \rangle = E_n | \psi_n \rangle##

I have hard time to put all those things together or seeing what that really means.

Thank you
 
Physics news on Phys.org
  • #2
Is that the entire homework question you were given? How does the question define the ##|\psi^i_n\rangle## states?

I'm not sure if this is relevant, but,... if ##H## is the usual Hamiltonian operator, it's presumably Hermitian. There's a theorem that the eigenstates of an Hermitian operator span the Hilbert space, hence any other state can be expressed as a linear combination of ##H##'s eigenstates ##|\psi_n\rangle##. But in this, ##U## plays no role. Again, what are the ##|\psi^i_n\rangle## states??

You also have $$H |\phi_n \rangle ~=~ HU |\psi_n \rangle ~=~ UH |\psi_n \rangle ~=~ U E_n |\psi_n\rangle ~=~ E_n |\phi_n \rangle ~,$$but I'm not sure how that helps here. Are the eigenstates of ##H## degenerate? I.e., more than 1 eigenstate with the same ##E_n## eigenvalue? Is that what the ##|\psi^i_n\rangle## denote?
 
  • Like
Likes vanhees71
  • #3
strangerep said:
Is that the entire homework question you were given? How does the question define the ##|\psi^i_n\rangle## states?
Hi, yeah this is the entire homework question and the only thing we know about ##
|\psi^i_n\rangle
##
is that ##
| \phi_n \rangle = \sum_i \alpha_i |\psi_n^i \rangle
##

Where i is the degree of degeneracy
 
  • #4
happyparticle said:
Hi, yeah this is the entire homework question and the only thing we know about ##
|\psi^i_n\rangle
##
is that ##
| \phi_n \rangle = \sum_i \alpha_i |\psi_n^i \rangle
##

Where i is the degree of degeneracy
You omitted that (crucial) last sentence from your original problem statement. You also didn't include what the question was actually asking. :headbang:

That's why the PF homework guidelines urge you to show the whole, unedited problem statement.

(I'm sure that being a "happy" particle is a pleasant state of mind, but maybe you should lay off the weed while attempting physics study?)

Anyway, now it's easy. Since ##|\phi_n\rangle## must be an eigenstate of ##H## with eigenvalue ##E_n##, it must be a linear combination of the ##|\psi_n^i \rangle##.
 
  • Like
Likes vanhees71
  • #5
strangerep said:
You omitted that (crucial) last sentence from your original problem statement.
I thought it was implied, sorry. Not because I thought you should know, but I thought that the form ##
| \phi_n \rangle = \sum_i \alpha_i |\psi_n^i \rangle## implies that i is the degree of degeneracy.
strangerep said:
You also didn't include what the question was actually asking.
I have to show exactly this##
| \phi_n \rangle = \sum_i \alpha_i |\psi_n^i
##
However, as I said I'm not sure how to do with what I know or what the equation above means exactly.

I'm not sure to understand why the i power ##
|\psi_n^i \rangle
##
 
  • #6
happyparticle said:
I'm not sure to understand why the i power ##|\psi_n^i \rangle##
The "i" is not a power, just an upstairs index to distinguish the various degenerate eigenstates.
 
  • Like
Likes vanhees71
  • #7
strangerep said:
You omitted that (crucial) last sentence from your original problem statement. You also didn't include what the question was actually asking. :headbang:

That's why the PF homework guidelines urge you to show the whole, unedited problem statement.
Also note that carefully reading of the problem text is the 0th step to the solution!
 
  • Like
Likes strangerep
  • #8
strangerep said:
Anyway, now it's easy. Since |ϕn⟩ must be an eigenstate of H with eigenvalue En, it must be a linear combination of the |ψni⟩.
I spent a big chuck of the weekend to convince myself, but I'm not sure to understand.
##U|\psi_n \rangle = E_n|\psi_n\rangle = | \phi_n \rangle##
I think with that I can say that ##| \phi_n \rangle## is an eigenvector of H, but I would say with eigenvalue 1.

Furthermore, I don't see why we can say that ##| \phi_n \rangle## must be a linear combination of ##|\psi_n^i\rangle##
 
  • #9
happyparticle said:
I spent a big chuck of the weekend to convince myself, but I'm not sure to understand.
##U|\psi_n \rangle = E_n|\psi_n\rangle = | \phi_n \rangle##
The middle bit looks wrong. You are given that ##H|\psi_n \rangle = E_n|\psi_n\rangle##, but this does not imply ##U|\psi_n \rangle = E_n|\psi_n\rangle##.

happyparticle said:
I think with that I can say that ##| \phi_n \rangle## is an eigenvector of H,
Not the way you tried to do it. I have already given you the correct method in my post #2. And its eigenvalue is ##E_n##, not 1. This was also shown in my post #2.

happyparticle said:
Furthermore, I don't see why we can say that ##| \phi_n \rangle## must be a linear combination of ##|\psi_n^i\rangle##
After you have proven that ##|\phi_n \rangle## is an eigenstate of ##H## with eigenvalue ##E_n##, then...

Suppose there was only 1 eigenstate of ##H## (i.e., suppose ##H## were not degenerate). Then you could invoke the theorem that the eigenstates of an Hermitian operator span the Hilbert space, and are mutually orthogonal;-- that would be enough to prove ##|\phi_n\rangle = |\psi_n\rangle##.

Even in the degenerate case it is still true that the eigenstates with different eigenvalues are orthogonal. Therefore, since any state can be expressed as a sum over all ##H##'s eigenstates, we can express ##|\phi_n\rangle## as such a sum. But ##|\phi_n\rangle## must be orthogonal to all ##H##'s eigenstates that don't have eigenvalue ##E_n##, hence those eigenstates cannot appear in the sum for ##|\phi_n\rangle##. That leaves only the ##|\psi_n^i\rangle## states in the sum.
 
  • Like
Likes happyparticle, PeroK and vanhees71

FAQ: Unitary vector commuting with Hamiltonian and effect on system

What is a unitary vector in the context of quantum mechanics?

In quantum mechanics, a unitary vector typically refers to a unit vector in a complex Hilbert space, which means it has a norm of one. This ensures that the vector represents a valid quantum state, preserving the total probability of the system.

What does it mean for a unitary vector to commute with a Hamiltonian?

For a unitary vector to commute with a Hamiltonian means that the vector remains unchanged when the Hamiltonian operator acts on it. Mathematically, if \( |\psi\rangle \) is a unitary vector and \( H \) is the Hamiltonian, then \( H|\psi\rangle = E|\psi\rangle \), where \( E \) is the energy eigenvalue associated with the state \( |\psi\rangle \). This implies that \( |\psi\rangle \) is an eigenvector of the Hamiltonian.

What is the significance of a unitary vector commuting with the Hamiltonian in a quantum system?

The significance is that the unitary vector represents a stable state of the system with a well-defined energy. Since it commutes with the Hamiltonian, it means that the system is in an eigenstate of the Hamiltonian, and its energy is conserved. This is crucial for understanding the time evolution and stability of quantum states.

How does the commutation of a unitary vector with the Hamiltonian affect the time evolution of a quantum system?

If a unitary vector commutes with the Hamiltonian, the time evolution of the quantum state described by this vector is straightforward. According to the Schrödinger equation, the state evolves as \( |\psi(t)\rangle = e^{-iHt/\hbar}|\psi(0)\rangle \). For an eigenstate of the Hamiltonian, this simplifies to \( |\psi(t)\rangle = e^{-iEt/\hbar}|\psi(0)\rangle \), indicating that the state only acquires a phase factor over time and its probability distribution remains unchanged.

Can a unitary vector that commutes with the Hamiltonian be used to simplify solving a quantum system?

Yes, identifying unitary vectors that commute with the Hamiltonian can significantly simplify solving a quantum system. These vectors are eigenstates of the Hamiltonian, and knowing them allows one to directly determine the energy levels and the corresponding quantum states of the system. This can reduce the complexity of solving the Schrödinger equation and provide insights into the system's behavior.

Similar threads

Back
Top