Unveiling the Proof of Induced EMF Formula: E = ∫ (v x B) · dl

In summary: Maxwell's_equationsIn summary, the formula ##E = \int (\vec v \times \vec B) \cdot d \vec l## is a general formula that can be derived from Maxwell's equations and is applicable for calculating the energy per unit charge using the Lorentz force. It can also be applied to loop integrals, but it is important to use the correct form of Faraday's Law in integral form which includes the term for the induced electric field.
  • #1
phantomvommand
286
39
TL;DR Summary
Why is ##E = \int (\vec v \times \vec B) \cdot d \vec l##?
Why is ##E = \int (\vec v \times \vec B) \cdot d \vec l##? This seems to be a general formula, and I would like to know its proof.

Thanks for all the help.
 
Physics news on Phys.org
  • #2
Are you familiar with the Lorentz force ?
Then the energy per unit charge (in SI units: Joule/Coulomb) follows from ##\int {\vec F\over q} \cdot d\vec l## .

PS it's a bit confusing to use the symbol ##E## for this; it's actually a potential difference (or emf)
$$\text {EMF} = V_{AB} = \int_A^B {\vec F\over q} \cdot d\vec l $$##\ ##
 
  • Like
Likes phantomvommand
  • #3
BvU said:
Are you familiar with the Lorentz force ?
Then the energy per unit charge (in SI units: Joule/Coulomb) follows from ##\int \vec F \cdot d\vec l## .

##\ ##
Yes, I am. Thanks for the help, I never realized this connection. I suppose this formula can be used in general? Would I be more accurate to use a loop integral instead of an integral?
 
  • #4
phantomvommand said:
Yes, I am. Thanks for the help, I never realized this connection. I suppose this formula can be used in general? Would I be more accurate to use a loop integral instead of an integral?
The expression is correct, so it should be universally applicable (but for a loop I expect to get 0 : ##\ V_{AA}\equiv 0## ) .

Check out a few of the sections in the link (Force on a current-carrying wire, EMF).

##\ ##
 
  • #5
As anything in electrodynamics the formula can be derived from Maxwell's equations in differential form, which are always valid. Here one integrates Faraday's Law (in SI units)
$$\vec{\nabla} \times \vec{E}=-\partial_t \vec{B}$$
over a surface ##A## with boundary curve ##\partial A## with the usual orientation of the path given by the right-hand rule.
$$\int_A \mathrm{d}^2 \vec{f} \cdot \vec{\nabla} \times \vec{E}=\int_{\partial A} \mathrm{d} \vec{r} \cdot \vec{E}=-\int_A \mathrm{d}^2 \vec{f} \cdot \partial_t \vec{B}.$$
Now the usual integral form of Faraday's Law is written in terms of the magnetic flux
$$\Phi_{B}=\int_{A} \mathrm{d}^2 \vec{f} \cdot \vec{B}.$$
If now the surface ##A## and its boundary ##\partial A## are time-dependent you have to use Reynold's transport theorem for surface integrals to take the time derivative. Together with ##\vec{\nabla} \cdot \vec{B}## this leads to the ONLY generally correct form of Faraday's Law in integral form:
$$\mathcal{E}=\int_{\partial A} \mathrm{d} \vec{r} \cdot (\vec{E}+\vec{v} \times \vec{B})=-\dot{\Phi}_B=-\frac{\mathrm{d}}{\mathrm{d} t} \Phi_B.$$
For a derivation of the corresponding Reynold's transport theorem, see

https://en.wikipedia.org/wiki/Faraday's_law_of_induction#Proof
 
  • Like
Likes phantomvommand
Back
Top