- #1
Magnetons
- 18
- 4
- TL;DR Summary
- L(f,P) ##\leq## L(f,Q) ##\leq## U(f,Q) ##\leq## U(f,P)
Lemma
Let f be a bounded function on [a,b]. If P & Q are partitions of [a,b] and P ##\subseteq## Q , then
L(f,P) ##\leq## L(f,Q) ##\leq## U(f,Q) ##\leq## U(f,P) .
Question is "How can P have bigger upper darboux sum than Q while it is a subset of Q"
Let f be a bounded function on [a,b]. If P & Q are partitions of [a,b] and P ##\subseteq## Q , then
L(f,P) ##\leq## L(f,Q) ##\leq## U(f,Q) ##\leq## U(f,P) .
Question is "How can P have bigger upper darboux sum than Q while it is a subset of Q"