- #1
BWV
- 1,524
- 1,860
Was curious at the upper limit for neutron stars,
found this article stating one was found at around 700 / s
https://www.newscientist.com/article/dn8576-fast-spinning-neutron-star-smashes-speed-limit/
did not see the size, the article is behind a paywall, but it would have taken a radius of about 7km for the speed to exceed 0.1C, which is far bigger than any neutron star, as far as I have read. So neutron stars cannot spin at relativistic speeds?
Not really sure how the radius of a black hole is measured, as the event horizon extends well beyond that point ( correct?) but did find this
a supermassive black hole at the center of galaxy NGC 1365 has had the radiation emitted from the volume outside of it detected and measured, revealing its speed. Even at these large distances, the material spins at 84% the speed of light.
https://www.forbes.com/sites/starts...at-almost-the-speed-of-light/?sh=1387d657735a
but only the rest mass of the black hole contributes to its gravitation, not the inertial mass, which for an object spinning at 0.84c would have the same gamma correction as an object traveling in a straight line at that speed? So given a big enough black hole (there is no theoretical upper limit correct?) it could spin at any arbitrary speed approaching c ?
found this article stating one was found at around 700 / s
https://www.newscientist.com/article/dn8576-fast-spinning-neutron-star-smashes-speed-limit/
did not see the size, the article is behind a paywall, but it would have taken a radius of about 7km for the speed to exceed 0.1C, which is far bigger than any neutron star, as far as I have read. So neutron stars cannot spin at relativistic speeds?
Not really sure how the radius of a black hole is measured, as the event horizon extends well beyond that point ( correct?) but did find this
a supermassive black hole at the center of galaxy NGC 1365 has had the radiation emitted from the volume outside of it detected and measured, revealing its speed. Even at these large distances, the material spins at 84% the speed of light.
https://www.forbes.com/sites/starts...at-almost-the-speed-of-light/?sh=1387d657735a
but only the rest mass of the black hole contributes to its gravitation, not the inertial mass, which for an object spinning at 0.84c would have the same gamma correction as an object traveling in a straight line at that speed? So given a big enough black hole (there is no theoretical upper limit correct?) it could spin at any arbitrary speed approaching c ?