- #1
Math100
- 802
- 222
- Homework Statement
- Use Euler's summation formula to prove that, for ## x\geq 2 ##,
## \sum_{n\leq x}\frac{ \log {n}}{n^3}=A-\frac{ \log {x}}{2x^2}-\frac{1}{4x^2}+O\frac{ \log {x}}{x^3} ##, where ## A ## is a constant.
- Relevant Equations
- None.
Proof:
Let ## x\geq 2 ##.
Then ## \frac{d}{dt}(\frac{ \log {t}}{t^3})=\frac{1-3\log {t}}{t^4} ##.
By Euler's summation formula, we have that
## \sum_{n\leq x}\frac{ \log {n}}{n^3}=\int_{1}^{x} \frac{\log {t}}{t^3}dt+\int_{1}^{x} (t-[t])(\frac{1-3\log {t}}{t^4})dt+(x-[x])\frac{log {x}}{x^3} ##
## =\frac{-\log {x}}{2x^2}-\frac{1}{4x^2}+\frac{1}{4}+(\int_{1}^{\infty}-\int_{x}^{\infty})(t-[t])\frac{1-3\log {t}}{t^4}dt+O(\frac{log {x}}{x^3}) ##.
Thus
\begin{align*}
&\left | \int_{x}^{\infty}(t-[t])\frac{1-3\log {t}}{t^4}dt \right |\leq 2\int_{x}^{\infty}\frac{\log {t}}{t^4}dt\\
&=2\cdot (\frac{1+3\log {x}}{9t^3})\\
&=O(\frac{\log {x}}{x^3}).\\
\end{align*}
Therefore, ## \sum_{n\leq x}\frac{\log {n}}{n^3}=A-\frac{\log {x}}{2x^2}-\frac{1}{4x^2}+O(\frac{\log {x}}{x^3}) ##, where ## A ## is a constant.
Let ## x\geq 2 ##.
Then ## \frac{d}{dt}(\frac{ \log {t}}{t^3})=\frac{1-3\log {t}}{t^4} ##.
By Euler's summation formula, we have that
## \sum_{n\leq x}\frac{ \log {n}}{n^3}=\int_{1}^{x} \frac{\log {t}}{t^3}dt+\int_{1}^{x} (t-[t])(\frac{1-3\log {t}}{t^4})dt+(x-[x])\frac{log {x}}{x^3} ##
## =\frac{-\log {x}}{2x^2}-\frac{1}{4x^2}+\frac{1}{4}+(\int_{1}^{\infty}-\int_{x}^{\infty})(t-[t])\frac{1-3\log {t}}{t^4}dt+O(\frac{log {x}}{x^3}) ##.
Thus
\begin{align*}
&\left | \int_{x}^{\infty}(t-[t])\frac{1-3\log {t}}{t^4}dt \right |\leq 2\int_{x}^{\infty}\frac{\log {t}}{t^4}dt\\
&=2\cdot (\frac{1+3\log {x}}{9t^3})\\
&=O(\frac{\log {x}}{x^3}).\\
\end{align*}
Therefore, ## \sum_{n\leq x}\frac{\log {n}}{n^3}=A-\frac{\log {x}}{2x^2}-\frac{1}{4x^2}+O(\frac{\log {x}}{x^3}) ##, where ## A ## is a constant.