- #1
lamerali
- 62
- 0
Use implicit differentiation to find [tex]\frac{dy}{dx}[/tex] for xy[tex]^{2}[/tex] – yx[tex]^{2}[/tex] = 3xy
i've answered the question but i think I'm doing it wrong
any help is appreciated!
x(2y)[tex]\frac{dy}{dx}[/tex] – y(2x) = 3xy
2xy [tex]\frac{dy}{dx}[/tex] – 2yx = 3xy
2xy[tex]\frac{dy}{dx}[/tex] = 5xy
[tex]\frac{dy}{dx}[/tex] = [tex]\frac{5xy}{2xy}[/tex]
[tex]\frac{dy}{dx}[/tex] = 3xy
Thank you!
i've answered the question but i think I'm doing it wrong
any help is appreciated!
x(2y)[tex]\frac{dy}{dx}[/tex] – y(2x) = 3xy
2xy [tex]\frac{dy}{dx}[/tex] – 2yx = 3xy
2xy[tex]\frac{dy}{dx}[/tex] = 5xy
[tex]\frac{dy}{dx}[/tex] = [tex]\frac{5xy}{2xy}[/tex]
[tex]\frac{dy}{dx}[/tex] = 3xy
Thank you!