- #1
Math100
- 802
- 222
- Homework Statement
- Let ## p_{n} ## denote the nth prime. For ## n>3 ##, show that ## p_{n}<p_{1}+p_{2}+\dotsb +p_{n-1} ##. [Hint: Use induction and the Bertrand conjecture.]
- Relevant Equations
- None.
Proof:
The proof is by induction.
(1) When ## n=4 ##, the statement is ## p_{4}<p_{1}+p_{2}+\dotsb +p_{3} ##,
which is true, because ## 7<10 ##.
(2) Now assume ## n=k+1 ##.
Then ## p_{k+1}<p_{1}+p_{2}+\dotsb +p_{k+1-1}\implies p_{k+1}<p_{1}+p_{2}+\dotsb +p_{k} ##.
Thus ## p_{k}<p_{1}+p_{2}+\dotsb +p_{k-1} ##.
Applying Bertrand's conjecture produces:
## p_{k+1}<p_{1}+p_{2}+\dotsb +p_{k-1}+p_{k}\implies p_{k+1}<p_{k}+p_{k}=2p_{k} ##.
Thus ## p_{k+1}<2p_{k} ##.
Therefore, ## p_{n}<p_{1}+p_{2}+\dotsb +p_{n-1} ## for ## n>3 ##.
The proof is by induction.
(1) When ## n=4 ##, the statement is ## p_{4}<p_{1}+p_{2}+\dotsb +p_{3} ##,
which is true, because ## 7<10 ##.
(2) Now assume ## n=k+1 ##.
Then ## p_{k+1}<p_{1}+p_{2}+\dotsb +p_{k+1-1}\implies p_{k+1}<p_{1}+p_{2}+\dotsb +p_{k} ##.
Thus ## p_{k}<p_{1}+p_{2}+\dotsb +p_{k-1} ##.
Applying Bertrand's conjecture produces:
## p_{k+1}<p_{1}+p_{2}+\dotsb +p_{k-1}+p_{k}\implies p_{k+1}<p_{k}+p_{k}=2p_{k} ##.
Thus ## p_{k+1}<2p_{k} ##.
Therefore, ## p_{n}<p_{1}+p_{2}+\dotsb +p_{n-1} ## for ## n>3 ##.