- #1
solakis1
- 422
- 0
Given the following axioms:
1) ##P\implies(Q\implies P)##
2) ##((P\implies(Q\implies R))\implies((P\implies Q)\implies(P\implies R))## Where ##P,Q,R## are any formulas
3)##(\neg P\implies\neg Q)\implies (Q\implies P)## then prove:
##\{A\implies B,B\implies C\}|- A\implies C##
Without using the deduction theorem and as a rule of inference M.ponens
1) ##P\implies(Q\implies P)##
2) ##((P\implies(Q\implies R))\implies((P\implies Q)\implies(P\implies R))## Where ##P,Q,R## are any formulas
3)##(\neg P\implies\neg Q)\implies (Q\implies P)## then prove:
##\{A\implies B,B\implies C\}|- A\implies C##
Without using the deduction theorem and as a rule of inference M.ponens
Last edited by a moderator: