Use mathematical logic to prove this proposition

AI Thread Summary
The discussion focuses on proving the proposition A implies C given the premises A implies B and B implies C, using axioms from a Hilbert System without employing the deduction theorem or Modus Ponens. The axioms provided include implications that form the basis for the proof structure. The proof is constructed by relabeling the variables and applying the axioms systematically to derive the desired conclusion. Key steps involve utilizing the axioms to establish the relationships between the propositions. The conclusion confirms that A implies C follows logically from the initial premises.
solakis1
Messages
407
Reaction score
0
Given the following axioms:
1) ##P\implies(Q\implies P)##
2) ##((P\implies(Q\implies R))\implies((P\implies Q)\implies(P\implies R))## Where ##P,Q,R## are any formulas
3)##(\neg P\implies\neg Q)\implies (Q\implies P)## then prove:

##\{A\implies B,B\implies C\}|- A\implies C##
Without using the deduction theorem and as a rule of inference M.ponens
 
Last edited by a moderator:
Mathematics news on Phys.org
Your OP outlines the axioms of a Hilbert System. Go to the wiki page on Hilbert Systems and search "(HS2)" to see a proof of the following proposition from those axioms using Modus Ponens as rule of inference.
$$(p \to q) \to ((q \to r) \to (p \to r))$$
Relabel ##p,q,r## as ##A,B,C## to get
$$(A \to B) \to ((B \to C) \to (A \to C))$$
Then we have:
\begin{align}
&\vdash(A \to B) \to ((B \to C) \to (A \to C))\\
(A \to B), (B \to C)&\vdash(A \to B) \to ((B \to C) \to (A \to C))\\
(A \to B), (B \to C)&\vdash A\to B\quad\quad\textrm{[1st axiom]}\\
(A \to B), (B \to C)&\vdash(B \to C) \to (A \to C)
\quad\quad\textrm{[Modus Ponens on 3, 2]}\\
(A \to B), (B \to C)&\vdash B\to C \quad\quad\textrm{[2nd axiom]}\\
(A \to B), (B \to C)&\vdash A \to C
\quad\quad\textrm{[Modus Ponens on 5, 4]}
\end{align}
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top