- #1
chwala
Gold Member
- 2,753
- 388
- Homework Statement
- see attached.
- Relevant Equations
- series sum
My interest is on the (highlighted part in yellow ) of finding the partial fractions- Phew took me time to figure out this out
My approach on the highlighted part;
i let
##(kr+1) =x ##
then, ##\dfrac{1}{(kr+1)(kr-k+1)} = \dfrac{1}{x(x-k)}##
then,
##\dfrac{1}{(x)(x-k)}=\dfrac{A}{x} +\dfrac{B}{x-k}##
##1=A(x-k)+Bx##
##Ax+Bx=0##
##-Ak=1##
##A=\dfrac{-1}{k}##
i know that ##A+B=0##
##B=\dfrac{1}{k}##
thus,
##\dfrac{1}{(x)(x-k)}=\dfrac{-1}{kx} +\dfrac{1}{k(x-k)}##
##\dfrac{1}{(kr+1)(kr-k+1)}=\dfrac{-1}{k(kr+1)} +\dfrac{1}{k(kr-k+1)}##
##\dfrac{1}{(kr+1)(kr-k+1)}= \dfrac{1}{k(kr-k+1)}-\dfrac{1}{k(kr+1)}##
##\dfrac{1}{(kr+1)(kr-k+1)}= \dfrac{1}{k(k(r-1)+1)}-\dfrac{1}{k(kr+1)}##
any simpler or alternative approach (in determining the partial fractions) prompted this post.
My approach on the highlighted part;
i let
##(kr+1) =x ##
then, ##\dfrac{1}{(kr+1)(kr-k+1)} = \dfrac{1}{x(x-k)}##
then,
##\dfrac{1}{(x)(x-k)}=\dfrac{A}{x} +\dfrac{B}{x-k}##
##1=A(x-k)+Bx##
##Ax+Bx=0##
##-Ak=1##
##A=\dfrac{-1}{k}##
i know that ##A+B=0##
##B=\dfrac{1}{k}##
thus,
##\dfrac{1}{(x)(x-k)}=\dfrac{-1}{kx} +\dfrac{1}{k(x-k)}##
##\dfrac{1}{(kr+1)(kr-k+1)}=\dfrac{-1}{k(kr+1)} +\dfrac{1}{k(kr-k+1)}##
##\dfrac{1}{(kr+1)(kr-k+1)}= \dfrac{1}{k(kr-k+1)}-\dfrac{1}{k(kr+1)}##
##\dfrac{1}{(kr+1)(kr-k+1)}= \dfrac{1}{k(k(r-1)+1)}-\dfrac{1}{k(kr+1)}##
any simpler or alternative approach (in determining the partial fractions) prompted this post.
Last edited: