- #1
James1238765
- 120
- 8
The 8 gluon fields of SU(3) can be represented (generated) by the 8 Gel-Mann matrices:
$$ \lambda_1 =
\begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} , \lambda_2 =
\begin{bmatrix}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} , \lambda_3 =
\begin{bmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{bmatrix} $$
$$\lambda_4 =
\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{bmatrix}, \lambda_5 =
\begin{bmatrix}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{bmatrix} , \lambda_6 =
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix} $$
$$\lambda_7 =
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{bmatrix} , \lambda_8 =
\begin{bmatrix}
\frac{1}{\sqrt3} & 0 & 0 \\
0 & \frac{1}{\sqrt3} & 0 \\
0 & 0 & -\frac{2}{\sqrt3}
\end{bmatrix}
$$
While I have seen many derivations for the Gel-Mann matrices, I have not seen a demonstration of the basic usage of these matrices.
Suppose we have a "red gluon". Is this to be represented by the column vector
$$ \vec{red} = \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}?$$
Then, if we would like to calculate the inverse of this "red gluon", do we multiply this column vector representation against one of the Gel-mann matrices, such as ##\lambda_1 \vec {red} ##:
$$
\begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix} =
\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}$$
What does ##\lambda_1 \vec {red} = \vec {green} ## mean in this representation?
$$ \lambda_1 =
\begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} , \lambda_2 =
\begin{bmatrix}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} , \lambda_3 =
\begin{bmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{bmatrix} $$
$$\lambda_4 =
\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{bmatrix}, \lambda_5 =
\begin{bmatrix}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{bmatrix} , \lambda_6 =
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix} $$
$$\lambda_7 =
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{bmatrix} , \lambda_8 =
\begin{bmatrix}
\frac{1}{\sqrt3} & 0 & 0 \\
0 & \frac{1}{\sqrt3} & 0 \\
0 & 0 & -\frac{2}{\sqrt3}
\end{bmatrix}
$$
While I have seen many derivations for the Gel-Mann matrices, I have not seen a demonstration of the basic usage of these matrices.
Suppose we have a "red gluon". Is this to be represented by the column vector
$$ \vec{red} = \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}?$$
Then, if we would like to calculate the inverse of this "red gluon", do we multiply this column vector representation against one of the Gel-mann matrices, such as ##\lambda_1 \vec {red} ##:
$$
\begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix} =
\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}$$
What does ##\lambda_1 \vec {red} = \vec {green} ## mean in this representation?
Last edited: