- #1
BeyondBelief96
- 15
- 2
- TL;DR Summary
- Want to understand how to properly apply or decompose the beam splitter operator.
Hello, I am a senior undergrad doing research in quantum optics, and I am trying to work out at the moment the output state of sending a coherent state through one input port and a squeezed vacuum state through the other, just to see what happens tbh. The problem I have constantly been running into is how to properly decompose the beam splitter operator to apply it to the input states.
The beam splitter operator has the form: ## \hat{B} = e^{\frac{\theta}{2}(\hat{a}^{\dagger}\hat{b}e^{i\phi} - \hat{a}\hat{b}^{\dagger}e^{-i\phi})} ##
I have tried using the Baker-Campbell-Hausdorff Relation that says:
## e^{\hat{X} + \hat{Y}} = e^{\hat{X}}e^{\hat{Y}}e^{-\frac{1}{2}[\hat{X},\hat{Y}]} ##
If and only if ## [\hat{X}, \hat{Y}] ## also commutes with ## \hat{X}## and ## \hat{Y} ##
The way I have tried to decompose this operator is letting ##\hat{X} = \frac{\theta}{2}e^{i\phi}\hat{a}^{\dagger}\hat{b}##
and ## \hat{Y} = \frac{\theta}{2}e^{-i\phi}\hat{a}\hat{b}^{\dagger} ##
however when doing so I find that the commutator ## [\hat{X},\hat{Y}] = [ \frac{\theta}{2}e^{i\phi}\hat{a}^{\dagger}\hat{b}, \frac{\theta}{2}e^{-i\phi}\hat{a}\hat{b}^{\dagger}] = \frac{\theta^2}{4}(\hat{a}^{\dagger}\hat{a} - \hat{b}^{\dagger}\hat{b}) ##
which doesn't seem to commute with either of my original operators. So I dont' think this is the right way to go? Unless I have made a mistake. Any help would be appreciated. I am using a and b to denote the two different input ports. Also, I'm wanting to apply this beam splitter operator to the input state:
##\left|\Psi_I\right> = \hat{B} \left|\alpha\right>_a \left|\xi\right>_b = \hat{B}\hat{D}_a(\alpha)\hat{S}_b(\xi)\left|0 \right>_a \left|0\right>_{b} ##
where ##\hat{D}(\alpha)## is the displacement operator for generating coherent states,and ##\hat{S}(\xi)## is the squeezing operator, and that I can express both of them acting on the vacuum state in terms of photon number states. Thank you
The beam splitter operator has the form: ## \hat{B} = e^{\frac{\theta}{2}(\hat{a}^{\dagger}\hat{b}e^{i\phi} - \hat{a}\hat{b}^{\dagger}e^{-i\phi})} ##
I have tried using the Baker-Campbell-Hausdorff Relation that says:
## e^{\hat{X} + \hat{Y}} = e^{\hat{X}}e^{\hat{Y}}e^{-\frac{1}{2}[\hat{X},\hat{Y}]} ##
If and only if ## [\hat{X}, \hat{Y}] ## also commutes with ## \hat{X}## and ## \hat{Y} ##
The way I have tried to decompose this operator is letting ##\hat{X} = \frac{\theta}{2}e^{i\phi}\hat{a}^{\dagger}\hat{b}##
and ## \hat{Y} = \frac{\theta}{2}e^{-i\phi}\hat{a}\hat{b}^{\dagger} ##
however when doing so I find that the commutator ## [\hat{X},\hat{Y}] = [ \frac{\theta}{2}e^{i\phi}\hat{a}^{\dagger}\hat{b}, \frac{\theta}{2}e^{-i\phi}\hat{a}\hat{b}^{\dagger}] = \frac{\theta^2}{4}(\hat{a}^{\dagger}\hat{a} - \hat{b}^{\dagger}\hat{b}) ##
which doesn't seem to commute with either of my original operators. So I dont' think this is the right way to go? Unless I have made a mistake. Any help would be appreciated. I am using a and b to denote the two different input ports. Also, I'm wanting to apply this beam splitter operator to the input state:
##\left|\Psi_I\right> = \hat{B} \left|\alpha\right>_a \left|\xi\right>_b = \hat{B}\hat{D}_a(\alpha)\hat{S}_b(\xi)\left|0 \right>_a \left|0\right>_{b} ##
where ##\hat{D}(\alpha)## is the displacement operator for generating coherent states,and ##\hat{S}(\xi)## is the squeezing operator, and that I can express both of them acting on the vacuum state in terms of photon number states. Thank you
Last edited: