- #1
Math100
- 802
- 222
- Homework Statement
- Use the binary exponentiation algorithm to compute both ## 19^{53}\pmod {503} ## and ## 141^{47}\pmod {1537} ##.
- Relevant Equations
- None.
First, consider ## 19^{53}\pmod {503} ##.
Then ## 53=(110101)_{2}=2^{5}+2^{4}+2^{2}+1=32+16+4+1 ##.
Note that
\begin{align*}
19^{2}\equiv 361\pmod {503}\\
19^{4}\equiv 44\pmod {503}\\
19^{8}\equiv 427\pmod {503}\\
19^{16}\equiv 243\pmod {503}\\
19^{32}\equiv 198\pmod {503}.\\
\end{align*}
Thus ## 19^{53}\equiv (19^{32}\cdot 19^{16}\cdot 19^{4}\cdot 19)\pmod {503}\equiv (198\cdot 243\cdot 44\cdot 19)\pmod {503} ##.
Therefore, ## 19^{53}\equiv 406\pmod {503} ##.
Next, consider ## 141^{47}\pmod {1537} ##.
Then ## 47=(101111)_{2}=2^{5}+2^{3}+2^{2}+2+1=32+8+4+2+1 ##.
Note that
\begin{align*}
141^{2}\equiv 1437\pmod {1537}\\
141^{4}\equiv 778\pmod {1537}\\
141^{8}\equiv 1243\pmod {1537}\\
141^{16}\equiv 364\pmod {1537}\\
141^{32}\equiv 314\pmod {1537}\\
\end{align*}
Thus ## 141^{47}\equiv (141^{32}\cdot 141^{8}\cdot 141^{4}\cdot 141^{2}\cdot 141)\pmod {1537}\equiv (314\cdot 1243\cdot 778\cdot 1437\cdot 141)\pmod {1537} ##.
Therefore, ## 141^{47}\equiv 658\pmod {1537} ##.
Then ## 53=(110101)_{2}=2^{5}+2^{4}+2^{2}+1=32+16+4+1 ##.
Note that
\begin{align*}
19^{2}\equiv 361\pmod {503}\\
19^{4}\equiv 44\pmod {503}\\
19^{8}\equiv 427\pmod {503}\\
19^{16}\equiv 243\pmod {503}\\
19^{32}\equiv 198\pmod {503}.\\
\end{align*}
Thus ## 19^{53}\equiv (19^{32}\cdot 19^{16}\cdot 19^{4}\cdot 19)\pmod {503}\equiv (198\cdot 243\cdot 44\cdot 19)\pmod {503} ##.
Therefore, ## 19^{53}\equiv 406\pmod {503} ##.
Next, consider ## 141^{47}\pmod {1537} ##.
Then ## 47=(101111)_{2}=2^{5}+2^{3}+2^{2}+2+1=32+8+4+2+1 ##.
Note that
\begin{align*}
141^{2}\equiv 1437\pmod {1537}\\
141^{4}\equiv 778\pmod {1537}\\
141^{8}\equiv 1243\pmod {1537}\\
141^{16}\equiv 364\pmod {1537}\\
141^{32}\equiv 314\pmod {1537}\\
\end{align*}
Thus ## 141^{47}\equiv (141^{32}\cdot 141^{8}\cdot 141^{4}\cdot 141^{2}\cdot 141)\pmod {1537}\equiv (314\cdot 1243\cdot 778\cdot 1437\cdot 141)\pmod {1537} ##.
Therefore, ## 141^{47}\equiv 658\pmod {1537} ##.