- #1
alexmahone
- 304
- 0
$\displaystyle s_n=\left(\frac1n-1\right)^n$
My attempt:
For large $n$, the sequence oscillates between $e^{-1}$ and $-e^{-1}$ and therefore diverges. Now for the proof.
Assume, for the sake of argument, that the sequence converges to $L$.
$\exists N\in\mathbb{N}$ such that $|s_n-L|<0.1$ whenever $n\ge N$
$\displaystyle\left|\left(\frac1n-1\right)^n-L\right|<0.1$ whenever $n\ge N$
$\displaystyle\implies\left|\left(\frac1{n+1}-1\right)^{n+1}-L\right|<0.1$ whenever $n\ge N$
We can rewrite these 2 equations as
$\displaystyle\left|(-1)^n\left(1-\frac1n\right)^n-L\right|<0.1$ whenever $n\ge N$ --------------- (1)
$\displaystyle\left|(-1)^{n+1}\left(1-\frac1{n+1}\right)^{n+1}-L\right|<0.1$ whenever $n\ge N$
$\displaystyle\implies\left|(-1)^n\left(1-\frac1{n+1}\right)^{n+1}+L\right|<0.1$ whenever $n\ge N$ --------------- (2)
How do I get a contradiction from equations (1) and (2)?
My attempt:
For large $n$, the sequence oscillates between $e^{-1}$ and $-e^{-1}$ and therefore diverges. Now for the proof.
Assume, for the sake of argument, that the sequence converges to $L$.
$\exists N\in\mathbb{N}$ such that $|s_n-L|<0.1$ whenever $n\ge N$
$\displaystyle\left|\left(\frac1n-1\right)^n-L\right|<0.1$ whenever $n\ge N$
$\displaystyle\implies\left|\left(\frac1{n+1}-1\right)^{n+1}-L\right|<0.1$ whenever $n\ge N$
We can rewrite these 2 equations as
$\displaystyle\left|(-1)^n\left(1-\frac1n\right)^n-L\right|<0.1$ whenever $n\ge N$ --------------- (1)
$\displaystyle\left|(-1)^{n+1}\left(1-\frac1{n+1}\right)^{n+1}-L\right|<0.1$ whenever $n\ge N$
$\displaystyle\implies\left|(-1)^n\left(1-\frac1{n+1}\right)^{n+1}+L\right|<0.1$ whenever $n\ge N$ --------------- (2)
How do I get a contradiction from equations (1) and (2)?