- #1
1up20x6
- 6
- 0
Homework Statement
[tex]A = \begin{pmatrix}
1 & 4\\
2 & -1
\end{pmatrix}[/tex]
Find [itex]A^n[/itex] and [itex]A^{-n}[/itex] where n is a positive integer.
Homework Equations
The Attempt at a Solution
[tex](xI - A) = \begin{pmatrix}
x-1 & -4\\
-2 & x+1
\end{pmatrix}[/tex]
[tex]det(xI - A) = (x-3)(x+3)
[/tex]
[tex]λ_1 = 3\quad λ_2 = -3[/tex]
[tex]\begin{pmatrix}
2 & -4\\
-2 & 4\end{pmatrix}
\begin{pmatrix}
a\\
b
\end{pmatrix}
= \begin{pmatrix}
0\\
0
\end{pmatrix}\quad
\begin{pmatrix}
a\\
b
\end{pmatrix}
= \begin{pmatrix}
2\\
1
\end{pmatrix}[/tex]
[tex]\begin{pmatrix}
-4 & -4\\
-2 & -2\end{pmatrix}
\begin{pmatrix}
c\\
d
\end{pmatrix}
= \begin{pmatrix}
0\\
0
\end{pmatrix}\quad
\begin{pmatrix}
c\\
d
\end{pmatrix}
= \begin{pmatrix}
-1\\
1
\end{pmatrix}[/tex]
[tex]P = \begin{pmatrix}
λ_1 & λ_2
\end{pmatrix}
= \begin{pmatrix}
2 & -1\\
1 & 1
\end{pmatrix}[/tex]
[tex]P^{-1} = \begin{pmatrix}
\frac{1}{3} & \frac{1}{3}\\
\frac{-1}{3} & \frac{2}{3}
\end{pmatrix}[/tex]
[tex]D = \begin{pmatrix}
λ_1 & 0\\
0 & λ_2
\end{pmatrix}
= \begin{pmatrix}
3 & 0\\
0 & -3
\end{pmatrix}[/tex]
[tex]PD^nP^{-1} = A^n
= \begin{pmatrix}
2 & -1\\
1 & 1
\end{pmatrix}
\begin{pmatrix}
3^n & 0\\
0 & -3^n
\end{pmatrix}
\begin{pmatrix}
\frac{1}{3} & \frac{1}{3}\\
\frac{-1}{3} & \frac{2}{3}
\end{pmatrix}[/tex]
[tex]= \begin{pmatrix}
2(3^n) & -(-3)^n\\
3^n & (-3)^n
\end{pmatrix}
\begin{pmatrix}
\frac{1}{3} & \frac{1}{3}\\
\frac{-1}{3} & \frac{2}{3}
\end{pmatrix}[/tex]
[tex]= \begin{pmatrix}
\frac{2}{3}(3^n) + \frac{1}{3}((-3)^n) & \frac{2}{3}(3^n) - \frac{2}{3}((-3)^n)\\
\frac{1}{3}(3^n) - \frac{1}{3}((-3)^n) & \frac{1}{3}(3^n) + \frac{2}{3}((-3)^n)
\end{pmatrix}[/tex]
I think that everything I've done so far is correctly, but I can't find any way to simplify this equation any further, and I don't think that I could find [itex]A^{-n}[/itex] with an equation this complicated, so I must be missing something.