- #1
Chenkel
- 482
- 109
- TL;DR Summary
- Mr Lewin's dimensional analysis
Hello everyone. I was watching the Walter Lewin lectures and I noticed in the talk he used something called dimension analysis to study the time it takes for an object to drop based on differing heights.
I'm 22:07 minutes into the video.
With some guess work on what's proportional to what, he wrote
$$t = k{h}^\alpha{m}^\beta{g}^\gamma$$Where k is a constant, h is the height, m is the mass, and g is the gravity.
He argued that the dimensional equivalents are $$[T]=[L]^\alpha[M]^\beta\frac {[L]^\gamma} {[T]^{2\gamma}}$$
He said that ##\alpha + \gamma = 0## and ##\beta = 0## and ##1 = -2\gamma## so ## \gamma = \frac {-1} {2} ## and ##\alpha = \frac {1} {2}##
Plugging this values into the first equation we have $$t=k\frac{\sqrt{h}}{\sqrt{g}}$$
I'm wondering about the theory of this approach, how do we know that the equation ##t=k{h}^\alpha{m}^\beta{g}^\gamma## is right? It seems the approach used by Mr Lewin requires a little bit of guess work, but I'm wondering what the logic behind the guess work is, how do we know for example that there isn't some addition or subtraction of certain multiplications happening on the right side, how can we assume this simple formula before solving for the exponents.
Any feed back on this would be helpful, thank you!
I'm 22:07 minutes into the video.
With some guess work on what's proportional to what, he wrote
$$t = k{h}^\alpha{m}^\beta{g}^\gamma$$Where k is a constant, h is the height, m is the mass, and g is the gravity.
He argued that the dimensional equivalents are $$[T]=[L]^\alpha[M]^\beta\frac {[L]^\gamma} {[T]^{2\gamma}}$$
He said that ##\alpha + \gamma = 0## and ##\beta = 0## and ##1 = -2\gamma## so ## \gamma = \frac {-1} {2} ## and ##\alpha = \frac {1} {2}##
Plugging this values into the first equation we have $$t=k\frac{\sqrt{h}}{\sqrt{g}}$$
I'm wondering about the theory of this approach, how do we know that the equation ##t=k{h}^\alpha{m}^\beta{g}^\gamma## is right? It seems the approach used by Mr Lewin requires a little bit of guess work, but I'm wondering what the logic behind the guess work is, how do we know for example that there isn't some addition or subtraction of certain multiplications happening on the right side, how can we assume this simple formula before solving for the exponents.
Any feed back on this would be helpful, thank you!