- #1
Amer
- 259
- 0
if we cut a right cone parallel to the base having a two radius r and R The picture
View attachment 407
I want to use the volume of revolution around the y-axis
we have the line
[tex]y - 0 = \dfrac{h}{r-R} (x - R)[/tex]
[tex] x = \frac{r-R}{h} y +R [/tex]
The volume will be
[tex] \pi \int_{0}^{h} \left(\frac{r-R}{h} y + R\right)^2 dy [/tex]
[tex]\pi \int_{0}^{h} \frac{(r-R)^2y^2}{h^2} + \frac{2R(r-R)y}{h} + R^2 dy [/tex]
now i just have to evaluate the integral, did i miss something ?
View attachment 407
I want to use the volume of revolution around the y-axis
we have the line
[tex]y - 0 = \dfrac{h}{r-R} (x - R)[/tex]
[tex] x = \frac{r-R}{h} y +R [/tex]
The volume will be
[tex] \pi \int_{0}^{h} \left(\frac{r-R}{h} y + R\right)^2 dy [/tex]
[tex]\pi \int_{0}^{h} \frac{(r-R)^2y^2}{h^2} + \frac{2R(r-R)y}{h} + R^2 dy [/tex]
now i just have to evaluate the integral, did i miss something ?