- #1
imagemania
- 27
- 0
Homework Statement
Im somewhat unsure of what the result i have derived is exactly. I know the angular frequency should be
[tex]\omega = \sqrt{\frac{k}{m} - \frac{{b}^{2}}{4{m}^{2}}}[/tex]
The Attempt at a Solution
[tex]m\frac{{d}^{2}x}{d{t}^{2}} = -kx -b\frac{dx}{dt}[/tex]
Sub in [tex]\omega = \sqrt{\frac{k}{m}}[/tex]
Do [tex]x = {e}^{\lambda t}[/tex]
x' = ...
x''=...
[tex]{e}^{\lambda t}({\lambda}^{2} + \lambda \frac{b}{m} + {\omega}^{2}) = 0[/tex]
[tex]\lambda = -\frac{b}{2m} \pm \sqrt{\frac{{b}^{2}}{{4m}^{2}} - 4\frac{{\omega}^{2}}{4}}[/tex]
However, i thought
[tex]\omega = \sqrt{\frac{k}{m} - \frac{{b}^{2}}{4{m}^{2}}}[/tex]
Are these results related as i cannot quite put my tongue on how to get this result from the [tex]\lambda[/tex] result (And I am not entirely sure what [tex]\lambda[/tex] representes in real terms)
Thanks!
Last edited: