- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Two of the properties of the exterior product are the following:
- Let $\psi_1, \ldots , \psi_k, n_{1}, \ldots , n_{\ell}\in V^{\star}$ then it holds that $$\left (\psi_1\land \ldots \land \psi_k\right )\land \left (n_1\land \ldots \land n_{\ell}\right )=\psi_1\land \ldots \land \psi_k\land n_{1}\land \ldots \land n_{\ell}$$
- Let $\omega \in \land^kV^{\star}$ and $\sigma\in \land^{\ell}V^{\star}$. Then it holds that $$\omega\land \sigma=(-1)^{k\ell}\sigma\land \omega$$
I want to show the second property using besides other properties also the first one.
I have done the following:
Let $\psi_1, \ldots , \psi_k, n_{k+1}, \ldots , n_{k+\ell}\in V^{\star}$. Let $\omega \in \land^kV^{\star}$ and $\sigma\in \land^{\ell}V^{\star}$. Then we have that $\omega= \psi_1\land \ldots \land \psi_k$ and $\sigma=n_{k+1}\land \ldots \land n_{k+\ell}$.
We get the following:
\begin{align*}\omega\land \sigma=\left (\psi_1\land \ldots \land \psi_k\right )\land \left (n_{k+1}\land \ldots \land n_{k+\ell}\right ) \\ \overset{ \text{First property }}{ = } \psi_1\land \ldots \land \psi_k\land n_{k+1}\land \ldots \land n_{k+\ell}\end{align*}
Then we have to take a permutation of the form $\pi: (1, \ldots , k, k+1, \ldots , k+\ell) \mapsto (k+1, \ldots , k+\ell, 1, \ldots , k)$, right? (Wondering)
Which is the sign of that permutation? (Wondering)
Does it holds then that \begin{align*}\psi_1\land \ldots \land \psi_k\land n_1\land \ldots \land n_{\ell}&=n_{\pi(k+1)}\land \ldots \land n_{\pi(k+\ell)}\land \psi_{\pi(1)}\land \ldots \land \psi_{\pi(\ell)} \\ & =\text{sign}(\pi)\cdot n_{k+1}\land \ldots \land n_{k}\land \psi_{k+1}\land \ldots \land \psi_{k+\ell} \\ & = \text{sign}(\pi)\left (n_{k+1}\land \ldots \land n_{k}\right )\land \left (\psi_{k+1}\land \ldots \land \psi_{k+\ell}\right )\\ & = \text{sign}(\pi)\sigma\land \omega \end{align*} ? (Wondering)
Two of the properties of the exterior product are the following:
- Let $\psi_1, \ldots , \psi_k, n_{1}, \ldots , n_{\ell}\in V^{\star}$ then it holds that $$\left (\psi_1\land \ldots \land \psi_k\right )\land \left (n_1\land \ldots \land n_{\ell}\right )=\psi_1\land \ldots \land \psi_k\land n_{1}\land \ldots \land n_{\ell}$$
- Let $\omega \in \land^kV^{\star}$ and $\sigma\in \land^{\ell}V^{\star}$. Then it holds that $$\omega\land \sigma=(-1)^{k\ell}\sigma\land \omega$$
I want to show the second property using besides other properties also the first one.
I have done the following:
Let $\psi_1, \ldots , \psi_k, n_{k+1}, \ldots , n_{k+\ell}\in V^{\star}$. Let $\omega \in \land^kV^{\star}$ and $\sigma\in \land^{\ell}V^{\star}$. Then we have that $\omega= \psi_1\land \ldots \land \psi_k$ and $\sigma=n_{k+1}\land \ldots \land n_{k+\ell}$.
We get the following:
\begin{align*}\omega\land \sigma=\left (\psi_1\land \ldots \land \psi_k\right )\land \left (n_{k+1}\land \ldots \land n_{k+\ell}\right ) \\ \overset{ \text{First property }}{ = } \psi_1\land \ldots \land \psi_k\land n_{k+1}\land \ldots \land n_{k+\ell}\end{align*}
Then we have to take a permutation of the form $\pi: (1, \ldots , k, k+1, \ldots , k+\ell) \mapsto (k+1, \ldots , k+\ell, 1, \ldots , k)$, right? (Wondering)
Which is the sign of that permutation? (Wondering)
Does it holds then that \begin{align*}\psi_1\land \ldots \land \psi_k\land n_1\land \ldots \land n_{\ell}&=n_{\pi(k+1)}\land \ldots \land n_{\pi(k+\ell)}\land \psi_{\pi(1)}\land \ldots \land \psi_{\pi(\ell)} \\ & =\text{sign}(\pi)\cdot n_{k+1}\land \ldots \land n_{k}\land \psi_{k+1}\land \ldots \land \psi_{k+\ell} \\ & = \text{sign}(\pi)\left (n_{k+1}\land \ldots \land n_{k}\right )\land \left (\psi_{k+1}\land \ldots \land \psi_{k+\ell}\right )\\ & = \text{sign}(\pi)\sigma\land \omega \end{align*} ? (Wondering)