- #1
lmstaples
- 31
- 0
Homework Statement
Use the Ratio Test for series to determine whether each of the following series converge or diverge. Make Reasoning Clear.
(a) [itex]\sum^{∞}_{n=1}\frac{3^{n}}{n^{n}}[/itex]
(b) [itex]\sum^{∞}_{n=1}\frac{n!}{n^{\frac{n}{2}}}[/itex]
Homework Equations
[itex]if\:lim_{n\rightarrow∞}(\frac{a_{n+1}}{a_{n}}) < 1 \Rightarrow\sum^{∞}_{n=1}\:-\:converges[/itex]
[itex]if\:lim_{n\rightarrow∞}(\frac{a_{n+1}}{a_{n}})\in[0,1)\Rightarrow \sum^{∞}_{n=1}\:-\:diverges[/itex]
[itex]0\leq \sum^{∞}_{n=1}(a_n)\leq \sum^{∞}_{n=1}(b_n)[/itex]
[itex]\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\vdots[/itex]
[itex]if\:\sum^{∞}_{n=1}(a_n)\:-\:diverges\:\Rightarrow\:\sum^{∞}_{n=1}(b_n)\:-\:diverges[/itex]
[itex]if\:\sum^{∞}_{n=1}(b_n)\:-\:converges\:\Rightarrow\:\sum^{∞}_{n=1}(a_n)\:-\:converges[/itex]
The Attempt at a Solution
(a) I let [itex]a_{n}[/itex] = sequence of partial sums then plugged everything into ratio test formula.
I ended up with:
[itex]lim_{n\rightarrow∞}(\frac{a_{n+1}}{a_{n}})\:=\:3lim_{n\rightarrow∞}(\frac{n^{n}}{(n+1)(n+1)^{n}})[/itex]
I know that the limit equals 0 hence the series converges but not quite sure how to show that the limit cancels down to show 0 is "obvious"
Any help would be great, thanks.
(b) I let [itex]a_{n}[/itex] = sequence of partial sums then plugged everything into ratio test formula.
I ended up with:
[itex]lim_{n\rightarrow∞}(\frac{a_{n+1}}{a_{n}})\:=\:lim_{n\rightarrow∞}(\frac{n(\frac{n}{n+1})^{\frac{n}{2}}}{\sqrt{n+1}})\:+\:lim_{n\rightarrow∞}(\frac{(n)^{\frac{n}{2}}}{(n+1)^{\frac{n}{2}}\sqrt{n+1}})[/itex]
I know that:
[itex]lim_{n\rightarrow∞}(\frac{n(\frac{n}{n+1})^{\frac{n}{2}}}{\sqrt{n+1}})\:=\:∞[/itex]
And that:
[itex]lim_{n\rightarrow∞}(\frac{(n)^{\frac{n}{2}}}{(n+1)^{\frac{n}{2}}\sqrt{n+1}})\:=\:0[/itex]
Hence the overall limit = ∞ and so the series diverges; but, once again I'm not quite sure how to show that how the limits cancels down to show ∞ and 0 is "obvious"
Once again, any help would be great, thanks.