- #1
ravenea
- 10
- 0
Homework Statement
[itex]\lim_{x \to 0} \sqrt{x^3 + x^2}\sin\frac{\pi}{x}[/itex]
Homework Equations
The Attempt at a Solution
We know that [itex] -1 \leq \sin\frac{\pi}{x} \leq 1 [/itex]
[itex]\Leftrightarrow -\sqrt{x^3 + x^2} \leq \sqrt{x^3 + x^2}\sin\frac{\pi}{x} \leq \sqrt{x^3 + x^2}[/itex] since [itex]\sqrt{y} \geq 0\forall y\in\mathbb{P}\cup\{0\}[/itex]
Now, [itex]\lim_{x \to 0} -\sqrt{x^3 + x^2} = 0 = \lim_{x \to 0} \sqrt{x^3 + x^2}[/itex]
[itex] \therefore \lim_{x \to 0} \sqrt{x^3 + x^2}\sin\frac{\pi}{x} = 0 [/itex] by Sandwich Theorem.
Last edited: