I Using the Schrodinger eqn in finding the momentum operator

Hamiltonian
Messages
296
Reaction score
193
TL;DR Summary
how can we use the Schrodinger equation while finding ##\hat p## when in fact we have already used ##\hat p##(i.e. ##\hat p ^2## in the ##\hat T## term of the ##\hat H##) in the Schrodinger equation?
I have read that the Schrodinger equation has no formal derivation we are simply applying the Hamiltonian operator on the wave function
$$\hat H = i\hbar \frac{\partial}{\partial t} = \hat T + \hat V$$
here we substitute $$\hat T = \frac{\hat p^2}{2m}$$ where $$\hat p = -i \hbar \frac{\partial}{\partial x}$$
but when we derive the equation for ##\hat p## we actually substitute ##\frac{\partial \psi}{\partial t}## and ##\frac{\partial \psi *}{\partial t}## from the Schrodinger equation.

$$< p> = m\frac{d<x>}{dt} = m\int_{-\infty}^{+\infty} x\frac{\partial (\psi^*\psi)}{\partial t}$$
$$<p> = m\int_{-\infty}^{+\infty} x[\psi^*\frac{\partial \psi}{\partial t}+\psi\frac{\partial \psi^*}{\partial t}] dx$$
here we substitute ##\frac{\partial \psi}{\partial t}## and ##\frac{\partial \psi *}{\partial t}## as
$$\frac{\partial \psi}{\partial t} = \frac{i\hbar}{2m}\frac{\partial^2 \psi}{\partial x^2} -\frac{i}{\hbar} V\psi$$
$$\frac{\partial \psi^*}{\partial t} = \frac{-i\hbar}{2m}\frac{\partial^2 \psi^*}{\partial x^2} +\frac{i}{\hbar} V\psi^*$$
after some simplification we end up with
$$<p> = \int_{-\infty}^{+\infty} \psi^* (-i\hbar \frac{\partial}{\partial x})\psi dx$$
and then finally we get $$\hat p = -i\hbar \frac{\partial }{\partial x}$$
so I don't understand how we can use the Schrodinger equation while finding ##\hat p## when in fact we have already used ##\hat p##(i.e. ##\hat p ^2## in the ##\hat T## term of the ##\hat H##) in the Schrodinger equation?
this video does the derivation for the momentum operator
 
Last edited:
Physics news on Phys.org
What you appear to be showing is that$$m\frac{d\langle x \rangle}{dt} = \langle p \rangle$$ where ##\hat p = -i\hbar \frac{\partial}{\partial x}##. And that justifies the original definition of ##\hat p##.
 
PeroK said:
What you appear to be showing is that$$m\frac{d\langle x \rangle}{dt} = \langle p \rangle$$ where ##\hat p = -i\hbar \frac{\partial}{\partial x}##. And that justifies the original definition of ##\hat p##.
how exactly do we find ##\hat p## without using the Schrodinger equation? by finding ##\hat p## I mean how do we arrive at ##\hat p = -i\hbar \frac{\partial}{\partial x}##. I thought the only way of arriving at this would be by using ##m\frac{d<x>}{dt} = <p>## but when we use this approach we need to use the schrodinger equation but the KE energy term in the Hamiltonian is already using ##\hat p = -i\hbar \frac{\partial}{\partial x}##
 
Hamiltonian299792458 said:
how exactly do we find ##\hat p## without using the Schrodinger equation? by finding ##\hat p## I mean how do we arrive at ##\hat p = -i\hbar \frac{\partial}{\partial x}##. I thought the only way of arriving at this would be by using ##m\frac{d<x>}{dt} = <p>## but when we use this approach we need to use the schrodinger equation but the KE energy term in the Hamiltonian is already using ##\hat p = -i\hbar \frac{\partial}{\partial x}##
There are ways to motivate the definition of momentum. For example:

https://en.wikipedia.org/wiki/Momentum_operator#Origin_from_De_Broglie_plane_waves

And also on that page momentum as the generator of spatial translations (this is done in Sakurai's book).
 
  • Like
Likes vanhees71 and Hamiltonian
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top