MHB Using trigonometry to prove <c=50 degree

Albert1
Messages
1,221
Reaction score
0
$\triangle ABC,\angle B=30^o$ and
$\overline{BC}^2-\overline{AB}^2=\overline{AB}\times \overline{AC}$
using trigonometry to prove $\angle C=50^o$
 
Mathematics news on Phys.org
Albert said:
$\triangle ABC,\angle B=30^o$ and
$\overline{BC}^2-\overline{AB}^2=\overline{AB}\times \overline{AC}$
using trigonometry to prove $\angle C=50^o$

we have $\angle B=30^\circ$ hence $\angle A + \angle C=150\circ$ so we caan choose
$\angle A=(75^\circ+\theta)$ and $\angle C=(75^\circ-\theta)$
from the given equation using lay of sines we get
$\sin ^2\angle A - \ sin ^2 \angle C = \sin \angle C \sin\angle B$
or $( \sin \angle A + \sin \angle C)(sin \angle A - \sin \angle C) = \frac{1}{2}\sin \angle C$
or $(\sin ((75^\circ+ \theta) + \sin ((75^\circ - \theta)) (\sin ((75^\circ+ \theta) - \sin ((75^\circ - \theta)) = \frac{1}{2}\sin \angle C$
or $(2 \sin\, 75^\circ \cos \theta)(2 \cos 75^\circ\sin \theta) = \frac{1}{2}\sin \angle C$
or $sin \, 150^\circ \sin 2\theta = \frac{1}{2}\sin \angle C$
or $\frac{1}{2} \sin 2\theta = \frac{1}{2}\sin \angle C$
so $2 \theta = C$ or $2\theta = 180^\circ - C$
from $2\theta = 75 - \theta$ we get $\theta = 25^\circ$ or $C= 50^\circ$
from $2\theta = 180 - (75 - \theta) $ we get $\theta = 105^\circ$ out side limit as it has to be less than $75^\circ$
so
$C= 50^\circ$
proved
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
3
Views
2K
Replies
1
Views
1K
Replies
3
Views
2K
Replies
3
Views
1K
Replies
6
Views
1K
Replies
2
Views
2K
Replies
5
Views
1K
Back
Top