- #1
Rikyuri
- 3
- 2
Hi, while studying for my aerodynamics class, I encountered this equivalence that my professor gave us as a vector identity:
$$
\mathbf{V} \cdot \nabla \mathbf{V} = \nabla\left(\frac{V^{2}}{2}\right)-\mathbf{V} \times \boldsymbol{\omega}
$$
where ## \boldsymbol{\omega} = \nabla \times \mathbf{V} ##I tryed to expand the operator and found that ## \mathbf{V} \cdot \nabla \mathbf{V} = \nabla(\frac{V^{2}}{2}) ## but that can't be true.
I really don't understend how ## \nabla \times \boldsymbol{\omega} ## fits into the equivalence.
If someone can explain how this works, it would be great.
PS: I hope that the LaTeX insertions work; if not, how do you insert LaTeX code in a post? (solved)
Edit: Latex insertion correction
$$
\mathbf{V} \cdot \nabla \mathbf{V} = \nabla\left(\frac{V^{2}}{2}\right)-\mathbf{V} \times \boldsymbol{\omega}
$$
where ## \boldsymbol{\omega} = \nabla \times \mathbf{V} ##I tryed to expand the operator and found that ## \mathbf{V} \cdot \nabla \mathbf{V} = \nabla(\frac{V^{2}}{2}) ## but that can't be true.
I really don't understend how ## \nabla \times \boldsymbol{\omega} ## fits into the equivalence.
If someone can explain how this works, it would be great.
PS: I hope that the LaTeX insertions work; if not, how do you insert LaTeX code in a post? (solved)
Edit: Latex insertion correction
Last edited: