- #1
snipez90
- 1,101
- 5
Homework Statement
Show that the natural numbers satisfy commutativity of multiplication and distributivity of multiplication over addition.
Homework Equations
The Attempt at a Solution
I'm wondering if there is any potential circularity in this reasoning. I proved distributivity over addition first by say, fixing n, m and showing that M = {p in naturals | (n+m)p = np + mp} is equal to the set of natural numbers.
Then I used distributivity in the final step of my commutativity proof where the inductive hypothesis was mk = km and the inductive step m(k+1) = mk + m = km + m = k(m+1) (literally the last equality follows from distributivity).
This seems valid, but I know that distributivity is usually stated with both (n+m)p = np + mp and p(n+m) = pn + pm. Typically this follows from commutativity, but would this still follow even if I used the distributive law in my commutativity proof?