- #1
- 683
- 412
- TL;DR Summary
- Is a term proportional to ##\phi## valid in a scalar Lagrangian?
Hi, if I want to construct the most general Lagrangian of a single scalar field up to two fields and two derivatives, I usually see that is
$$\mathscr{L} = \phi \square \phi + c_2 \phi^2$$ i.e. the Klein-Gordon Lagrangian.
My question is, would be valid the Lagrangian
$$\mathscr{L} = \phi \square \phi + c_1 \phi + c_2 \phi^2$$
?
$$\mathscr{L} = \phi \square \phi + c_2 \phi^2$$ i.e. the Klein-Gordon Lagrangian.
My question is, would be valid the Lagrangian
$$\mathscr{L} = \phi \square \phi + c_1 \phi + c_2 \phi^2$$
?