MHB Value of b, y-intercept of Quadratic graph

AI Thread Summary
To find the value of b in the quadratic equation y = x^2 + ax + b, given that the graph crosses the x-axis at (2, 0) and (4, 0), we can derive two equations from these points. Substituting x = 2 into the equation gives 2a + b = -4, and substituting x = 4 results in 4a + b = -16. By solving these simultaneous equations, we can isolate a and b. The solution reveals the value of b as 8. Understanding this process clarifies the relationship between the coefficients and the graph's intercepts.
gazparkin
Messages
17
Reaction score
0
Hi,

Can anyone help me understand how I get to the answer on this one?

The diagram shows a sketch of the graph of y = x2 + ax + b

The graph crosses the x-axis at (2, 0) and (4, 0).

Work out the value of b.Thank you in advance!
 

Attachments

  • Graph.jpg
    Graph.jpg
    10.3 KB · Views: 121
Mathematics news on Phys.org
$$y=(x - 2)(x - 4)=x^2-6x+8$$
 
The graph is of y= x^2+ ax+ b and we are told that the graph goes through (2, 0). That means that when x= 2, y= 0. So we must have 0= 2^2+ a(2)+ b= 4+ 2a+ b or 2a+ b= -4. We are also told that the graph goes through (4, 0). That means that when x= 4, y= 0. So we must have 0= 4^2+ a(4)+ b= 16+ 4a+ b or 4a+ b= -16.

Solve the two equations, 2a+ b= -4 and 4a+ b= -16, for a and b.
 
HallsofIvy said:
The graph is of y= x^2+ ax+ b and we are told that the graph goes through (2, 0). That means that when x= 2, y= 0. So we must have 0= 2^2+ a(2)+ b= 4+ 2a+ b or 2a+ b= -4. We are also told that the graph goes through (4, 0). That means that when x= 4, y= 0. So we must have 0= 4^2+ a(4)+ b= 16+ 4a+ b or 4a+ b= -16.

Solve the two equations, 2a+ b= -4 and 4a+ b= -16, for a and b.

Thank you for this - really helped me understand.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
6
Views
2K
Replies
2
Views
1K
Replies
4
Views
2K
Replies
5
Views
2K
Replies
1
Views
2K
Replies
8
Views
2K
Replies
2
Views
1K
Back
Top