- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey! :giggle:
Let $f(x)=e^{-x}\sin (x)$, $x\in \mathbb{R}$.
a) Calculate the Taylor polynomial of order $4$ at $0$.
b) Calculate the value of $f \left (\frac{1}{2}\right )$ using estimation for the remainder with an error not more than $\frac{1}{400}$.I have done question a) :
\begin{align*}T_{0,4}(x)&=\sum_{k=0}^4\frac{f^{(k)}(0)(x-0)^k}{k!}=\frac{f^{(0)}(0)x^0}{0!}+\frac{f^{(1)}(0)x^1}{1!}+\frac{f^{(2)}(0)x^2}{2!}+\frac{f^{(3)}(0)x^3}{3!}+\frac{f^{(4)}(0)x^4}{4!} \\ & =\frac{0\cdot x^0}{0!}+\frac{1\cdot x^1}{1!}+\frac{(-2)\cdot x^2}{2!}+\frac{2\cdot x^3}{3!}+\frac{0\cdot x^4}{4!}=x+\frac{(-2)\cdot x^2}{2}+\frac{2\cdot x^3}{6}\\ & =x- x^2+\frac{ x^3}{3}\end{align*} As for question b) :
Do we have to check for which order the error is less or equal to $\frac{1}{400}$ ?
After having found the order we have that $\left |R_n \left (\frac{1}{2}\right )\right |\leq \frac{1}{400}$ and that $R_n\left (\frac{1}{2}\right )=f\left (\frac{1}{2}\right )-T_n\left (\frac{1}{2}\right )$ and from that inequality we get value of $f \left (\frac{1}{2}\right )$ ?
Or could we use part a) ? But there we have the point $0$ and now the point $\frac{1}{2}$
:unsure:
Let $f(x)=e^{-x}\sin (x)$, $x\in \mathbb{R}$.
a) Calculate the Taylor polynomial of order $4$ at $0$.
b) Calculate the value of $f \left (\frac{1}{2}\right )$ using estimation for the remainder with an error not more than $\frac{1}{400}$.I have done question a) :
\begin{align*}T_{0,4}(x)&=\sum_{k=0}^4\frac{f^{(k)}(0)(x-0)^k}{k!}=\frac{f^{(0)}(0)x^0}{0!}+\frac{f^{(1)}(0)x^1}{1!}+\frac{f^{(2)}(0)x^2}{2!}+\frac{f^{(3)}(0)x^3}{3!}+\frac{f^{(4)}(0)x^4}{4!} \\ & =\frac{0\cdot x^0}{0!}+\frac{1\cdot x^1}{1!}+\frac{(-2)\cdot x^2}{2!}+\frac{2\cdot x^3}{3!}+\frac{0\cdot x^4}{4!}=x+\frac{(-2)\cdot x^2}{2}+\frac{2\cdot x^3}{6}\\ & =x- x^2+\frac{ x^3}{3}\end{align*} As for question b) :
Do we have to check for which order the error is less or equal to $\frac{1}{400}$ ?
After having found the order we have that $\left |R_n \left (\frac{1}{2}\right )\right |\leq \frac{1}{400}$ and that $R_n\left (\frac{1}{2}\right )=f\left (\frac{1}{2}\right )-T_n\left (\frac{1}{2}\right )$ and from that inequality we get value of $f \left (\frac{1}{2}\right )$ ?
Or could we use part a) ? But there we have the point $0$ and now the point $\frac{1}{2}$
:unsure: